From Stars to the Laboratory: Exploring the (weak) r-Process with Nuclear Reactions Fernando Montes

Facility for Rare Isotope Beams FRIB

Michigan State University

#### **Nucleosynthesis processes**



### **Stellar explosions**



David A. Hardy

J. Hester and A. Loll, NASA, ESA

University of Warwick/Mark Garlick

- Extreme environment with complex magneto-hydrodynamics & nuclear physics at play
- Nuclear physics of unstable nuclei is needed to connect observations with the underlying physics
- Proton and alpha capture on unstable nuclei
- Cross sections low at astrophysical energies: 1 in 10<sup>6-12</sup>
- Current facilities, experiments can address important nuclear physics uncertainties



#### Weak r-process nucleosynthesis

#### **Open questions:**

- Are mergers the only site of r-process nucleosynthesis (MHD, MGF, ..)?
- Are mergers the dominant site of r-process nucleosynthesis?
- How important is an incomplete/weak r-process to solar system abundances?





#### Weak r-process abundances obtained from metalpoor star observations





National Science Foundation Michigan State University

5

#### Weak r-process nucleosynthesis





National Science Foundation Michigan State University

6

# Weak r-process conditions needed to explain observations



#### Important nuclear physics needed in weak r-process





### **Measurements possible right now**



Bliss, Arcones, Montes & Pereira, PRC (2020)

Psaltis et al. ApJ (2022)



#### Measurements possible right now





National Science Foundation Michigan State University F. Montes - s, i & r Element Nucleosynthesis (sirEN) 2025

### **Activation methods**



- Alpha beam impinges on target sample
- Reaction products de-excite by emission of g-rays
- Cross section obtained by measuring known gamma transitions
- Precision studies constrain alpha optical potentials









#### **Direct measurements with HabaNERO**



### **Direct measurements with MUSIC**



### **Direct measurements with SECAR**

SECAR SEparator for CApture Reactions



Setup customizable for  $(\alpha, \gamma)$ ,  $(\alpha, n)$ ,  $(p, \gamma)$ , (p, n)Nominal acceptance ±25 mrad and ±3.1% dE/E



National Science Foundation Michigan State University F. Montes - s, i & r Element Nucleosynthesis (sirEN) 2025

### **SECAR** gas target





### **SECAR recoil detection**







National Science Foundation Michigan State University

F. Montes - s, i & r Element Nucleosynthesis (sirEN) 2025 <sup>16</sup>

## First science experiments with SECAR

- SECAR has performed (α,n) and (p,n) science experiments
- Measurement of  ${}^{86}$ Kr( $\alpha$ ,1n) and ( $\alpha$ ,2n) channels by tuning SECAR on  ${}^{89}$ Sr and  ${}^{88}$ Sr recoils
- Use of neutron detector to provide additional gate on  $(\alpha,n)$  channel





## Weak r-process Experiments with SECAR

#### <sup>86</sup>Kr( $\alpha$ ,n)<sup>89</sup>Sr Recoils reaching final SECAR focal plane Si DSSD







• Type-II core collapse supernova with slightly proton rich conditions  $\nu p$ process

TRACI

ron

• Sequence of (n,p) and  $(p,\gamma)$ reactions drive the nucleosynthesis of heavier elements



- Measurement of known cross section <sup>58</sup>Fe(p,n)<sup>58</sup>Co reaction aims to pave the path for direct (p,n) measurements with SECAR
- Challenging optics since <sup>58</sup>Fe and <sup>58</sup>Co have almost identical mass



Tsintari et al. PRR (2025)



- Measurement of known cross section <sup>58</sup>Fe(p,n)<sup>58</sup>Co reaction aims to pave the path for direct (p,n) measurements with SECAR
- Challenging optics since <sup>58</sup>Fe and <sup>58</sup>Co have almost identical mass



- Measurement of known cross section <sup>58</sup>Fe(p,n)<sup>58</sup>Co reaction aims to pave the path for direct (p,n) measurements with SECAR
- Challenging optics since <sup>58</sup>Fe and <sup>58</sup>Co have almost identical mass





SECAR opens up unique opportunities for ion-optical setups to perform direct lowenergy (p, n) reaction measurements on insights into relevant astrophysical processes like the  $\nu$ p-process and explosive silicon burning



## Summary

- Strong evidence that multiple sites are contributing to the origin of the "light rprocess" elements – need to understand interplay in the era of NS merger observations
- We need reliable nuclear physics to determine the element-by-element contribution from each possible site
  - For weak r-process scenarios: need seed production reactions such as
    (α,n) bottle neck reaction rates
- Recent observational and experimental progress have advanced the field enormously in the last 5 years.
- Due to large number of experimental endeavors possible within next 10 years, it is is feasible all relevant weak r-process nuclear physics uncertainties may be resolved
- SECAR has been completed and it is ready for experiments (several waiting for beam time). Capabilities demonstrated for radiative capture reactions as well as new applications; (α,n) and (p,n) reactions.

