Kilonova Modeling

Kenta Hotokezaka (University of Tokyo)

© Tohoku University

Key question: what is the connection between mergers and GRBs?

The classical hypothesis:

Kilonova candidates in GRBs (No spectroscopic confirmation except one)

Possible Kilonovae in *short* GRBs:
GRB 050709, 060505, 060614, 080905A, 130603B, 150101B, 160821B, 200522A

Key question: what is the connection between mergers and GRBs?

The classical hypothesis:

Kilonova candidates in GRBs (No spectroscopic confirmation except one)

Possible Kilonovae in *short* GRBs:
e.g., GRB 050709, 060505, 060614, 080905A, 130603B, 150101B, 160821B, 200522A

Possible Kilonovae in *long* GRBs:
e.g., GRB 190109A, 211211A, 230307A

Possible Supernovae in short GRBs:
e.g., GRB 040924, 200826A

The short-long classification seems controversial.

Key question: what are the details and diversity of neutron star mergers?

Key question: what are the details and diversity of neutron star mergers?

Key question: what are the details and diversity of neutron star mergers?

Remnants & Neutron Star Equation of State

We selected EOSs satisfying $M_{
m max} \gtrsim 2 M_{\odot}$ (Demorest+2010, Antoniadis+2013)

See also, Baumgarte, Shapiro, Shibata 00, Margalit & Metzger 17, Ruiz, Shapiro, Tsokaros 18, Beniamini & Lu 2021

Variation in Abundance pattern

- The abundance pattern of post-merger outflow is sensitive to the remnant neutron star's lifetime.
- ⁴He is often most abundant.

- Kilonova modeling and AT2017gfo in GW170817
- JWST observation of a kilonova after GRB 230307A
- Conclusion

Neutron Star Merger & Kilonova

Li & Paczynski 98, Kulkarni 05, Metzger+10, Barnes & Kasen 13, Tanaka & KH 13

Kilonova AT2017gfo in GW170817

Arcavi+17, see also, Coulter+17, Lipunov+17, Soares-Santos+17, Tanvir+17, Valenti+17, Kasliwal+17,Drout+17, Evans+17, Utsumi+17

- Kilonova are much fainter and evolve much faster than supernovae.
- GW observations greatly help to find kilonovae.

Energy source: radioactive decay of many species

Way & Wigner 1948

KH, Sari, Piran 2017 also Metzger + 10, Korobkin+11, Goriely+11, Roberts+11, Wanajo+14,18, Lippuner & Roberts 14, more

Energy source: radioactive decay of many species

Way & Wigner 1948

KH, Sari, Piran 2017 also Metzger + 10, Korobkin+11, Goriely+11, Roberts+11, Wanajo+14,18, Lippuner & Roberts 14, more

Heating rate of nuclear waste

Heating rate after r-process

This is a unique properties of the heating rates of many betadecay chains.

Observed Light curve & β-decay

The light curve follows the radioactive heating of r-process nuclei.

 \cdot 0.05Msun of r-process is needed to explain the kilonova AT2017gfo.

Early photospheric phase

· The peak time is <1 day, suggesting a low opacity < 1 cm^2/g

Late photospheric phase

The peak time is <1 day, suggesting a low opacity < 1 cm²/g
 The diffusion phase lasts for ~ 10 days, a high opacity ~ 10 cm²/g

Efforts on kilonova modeling

GR(RM)HD inputs Ejecta properties

Shibata+17, Radice+18, Miller+19, Combi & Siegel 23, Fahlman & Fernandez 22, Haddai+23,Just+23, Fujibayashi+23, Kiuchi+24, Schianchi+24, Rosswog+25 Albino, Eleonora's talks Nuclear inputs Abundances Heating rates Zhu+18,21, Wu+19, Barnes+21, Bulla 23, Jabobi+24, Ricigliano+24

Rebecca,Sebastein, Jan's talks Atomic inputs Energy levels, gf-values Collision cross sections Kasen+13,17,Barnes & Kasen 13,Tanaka & KH 13, Tanaka+18,20, Gaigalas+19, Banerjee+20,22, Fontes+20, Gillaners+22, Da Silva+22, Mulholland+24, McCann+25, Ricardo Matteo's talks, Jorge's poster

Kilonova radiation

- · Multi-D
- · Elements ID
- · LTE, non-LTE

Tanaka, KH+14, Perego+17, Wollaeger+18,21, Bulla+19,21, Breschi+21, Korobkin+21, Darbha+21, Collins+23,24, Shrestha+23, Sneppen+23, Shingles+24

Watson+19, Gillaners+21,24, ,Domoto+21,22,24, Sneppen+23, Rahmouni+25, Pognan+25, **Salma's talk**

KH+21, 22, Pognan+22, Ricigliano+25, Blanka' talk

Kilonova observations

Photomertic & Spectroscopic

Stellar observations

R-process abundances nIR absorption lines

Beyond LTE: Color

Beyond LTE: Color

Kawaguchi+22

Brethauer+24

LTE simulations but neutral ions are artificially removed. The color evolution can match the observed data.

Radioactivity everywhere in Kilonova

The material even in the line forming region is radioactive. So you cannot put quiet atmosphere on top of the photosphere.

Impact of radioactive ionization

- Overioniation: The non-LTE abundances deviate from the LTE ones particularly for v>0.2c.
- Radiation transfer simulation is still on-going but this may significantly change the kilonova color and spectrum.
- I will come back to the hardest part in the calculation at the end of the talk.

Very preliminary

The 0.8 µm feature: He I and Sr II lines

The 0.8µm feature is interpreted as Sr II by Watson+19. However, He I can produce a similar feature (Pergo+22, Tarumi, KH+23).

Tarumi, KH+23 He I case

Sr II case

The 0.8 µm feature: He I and Sr II lines

The 0.8µm feature is interpreted as Sr II by Watson+19. However, He I can produce a similar feature (Pergo+22, Tarumi, KH+23).

Sneppen+24 show that the He line gets too strong with time.

- Sr II is likely to dominate at early times (<2.4 days)
- He I significantly contributes at later (>2.4 days), even a mass fraction of 1%

Nebular phase

Most photons created by atoms emerge without being absorbed.

 $\cdot\,$ But, fainter than the photospheric phase.

Kilonova Nebular Spectrum (~10 days post merger)

KH + 23, where the ejecta is assumed to be optically thin at ~10 days.

- The solar abundance (2nd 3rd r-process peaks) is assumed. $X^{+1} = X^{+2} = 0.5$
- [Te III] 2.1µm is the strongest M1 line.

[Te III]2.1µm line in the kilonova AT2017gfo

KH+23

 The Te III line is expected to be the strongest M1 line because it is a second r-process peak element.

- Kilonova modeling and AT2017gfo in GW170817
- JWST observation of a kilonova after GRB 230307A
- Conclusion

An extremely bright GRB 230307A

- T₉₀ ~ 35 s : Typical long GRB.
- The 2nd brightest GRB.
- LIGO/Virgo/KAGRA were not in operation.

Remarks on GRB 230307A

- The 1st JWST observation of a kilonova candidate.
- One of the nearest GRBs but the afterglow was very faint.
- A long GRB associated with a kilonova candidate.

GRB 230307A: JWST NIRCam Image

The most probable host ~ 300Mpc, large off-set ~ 40 kpc
The large off-set rules out the collapsar scenario.

GRB 230307A and JWST photometry

Levan,...KH+23

Afterglow+Kilonova light curve

Afterglow+Kilonova SED

The light curve is very similar to AT2017gfo (GW170817).
This supports a neutron star merger scenario.

JWST Spectrum of the KN candidate 230307A

Levan,..,KH+23, see also Gillanders+23

- An emission line feature around 2.1 μm is consistent with [Te III] 2.1μm.
- If correct, M(Te III)=10⁻³ M_{sun} and v_{exp} =0.08c.
- The total r-process mass ~ 0.05M_{sun}. (~ GW170817)

A mysterious IR bump (5µm)

- The IR bump (5µm) and 2.1 um emission require two temperatures, electrons: ~2000K and IR photons: ~700K.
- Curiously, a similar IR bump was detected by Spitzer at 45 days in GW170817.

A mysterious IR bump (5µm)

- The IR bump (5µm) and 2.1 um emission require two temperatures, electrons: ~2000K and IR photons: ~700K.
- Curiously, a similar IR bump was detected by Spitzer at 45 days in GW170817.
 - Actinide optical property, which we haven't understood?
 - R-process dust?

Conclusion

- The P-Cygni line features in AT2017gfo are attributed to Sr II or He I. He I may contribute significantly at later times.
- An emission line feature at 2.1µm is consistent with [Te III]
 2.1µm. Te is a second r-process peak element.
- The optical-IR emission of the long GRB 230307A (1-30 days) is strikingly similar to the kilonova AT2017gfo.
- An emission line in the JWST spectrum around 2.1µm may be [Te III].
- A mysterious IR bump peaking at 5µm suggests a missing IR opacity, which may be actinides or r-process dust.

Expected rate within 100 Mpc

see, Mandel & Broekgaarden 22 for a review.

GWTC3: 0.05 - 8 yr⁻¹ (90% level) (Abbott et al., 2021)

The merger hypothesis of r-process: 0.7 yr⁻¹ (e.g., KH et al., 18)

Galactic binary pulsars: 2+1-1 yr-1 (e.g., Kim et al., 15, Pol et al 19)

Short GRBs ($\theta_{jet} \sim 10^{\circ}$): 0.5^{+0.5}-0.3 yr⁻¹ (e.g., Wanderman & Piran 14, see also Ghirlanda et al., 16)