Observaitons of r-process enriched stars

Terese T. Hansen

Sirens conference

June 11, 2025

Astrophysical sites of the *r*-process ?

Exotic supernovae

Jet – supernovae

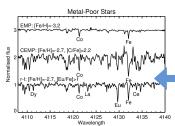
Collapsars

Core-collapse

Schramm+ 1974, Winteler+ 2012, Arcones+ 2011, Siegel+ 2018, Paten+ 2025

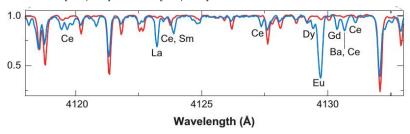
Nuclear astrophysics with stars

Nucleosynthesis event



Enriching interstellar medium

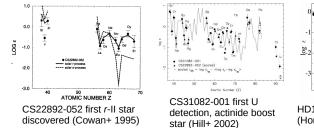
Measure stellar abundance of Eu <-> Eu produced in the nucleosynthesis event.



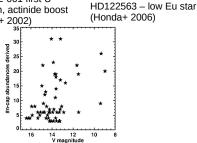
R-process enriched stars

- Stars with an r-process signature in their atmosphere, $[\mathrm{Ba/Eu}] < 0$
- Some are also enhanced making it easier r-I: 0.3 < [Eu/Fe] < 1.0, [Ba/Eu] < 0

r-II: [Eu/Fe] > 1.0, [Ba/Eu] < 0



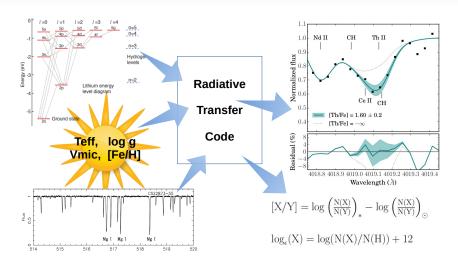
CS 22892-052 and HD 122563 Sneden+ 2008



Some history - the hunt has begun

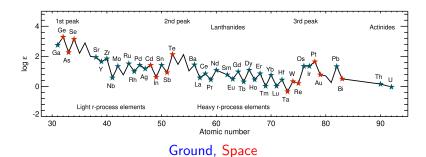
- HERES Survey (Barklem 2005) 8 new *r*-II stars and 35 new r-I stars out of 253 stars

~60 r-II stars known in 2016 Abundances spread over >20 publications. (saga database +JINABase)



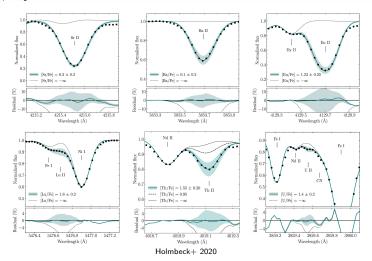
Atomic number

HD 122563


Stellar abundance analysis

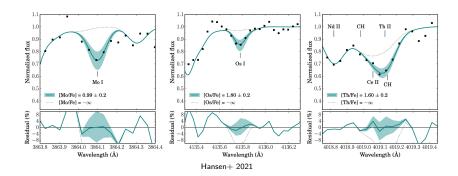
What n-cap elements can we get?

> 30 neutron-capture elements from ground based spectra!



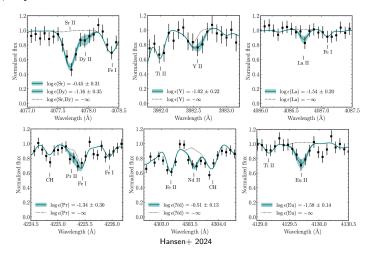
But what can we really get?

[Eu/Fe]= 1.28, R=60000, SNR=90 at 4100, V=10



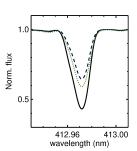
But what can we really get?

[Eu/Fe]= 1.18, R=35000, SNR=25 at 4500, V=17



But what can we really get?

[Eu/Fe]= 0.36, R=28000, SNR=20 at 4500; V=18.5

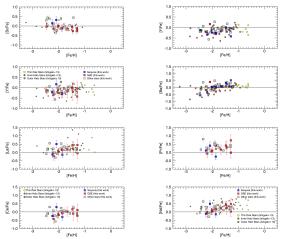


Scatter in abundances for CS22892-052

Teff	Logg	[Fe/H]	[Eu/Fe]	loge(Eu)	R / SNR	Ref
4760	1.30	-2.87	1.30	-1.05	22000/	McWilliam 1995
4850	1.50	-2.80	1.34	-0.94	40000/	Norris 1997
4690	1.15	-3.24	1.44	-1.28	41000/270	Roederer 2014
4850	1.60	-3.03	1.48	-1.03	47000/130	Francois 2007
4922	1.90	-2.61	1.48	-0.90	20000/50	Ren 2012
4884	1.81	-2.95	1.53	-0.90	20000/46	Barklem 2005
4790	1.60	-2.91	1.53	-0.86	90000/60	Honda 2004
4800	1.50	-3.10	1.62	-0.96	45000/200	Roederer 2009
4800	1.50	-3.10	1.63	-0.95	60000/100	Sneden 2003
4800	1.50	-3.12	1.66	-0.95	45000/200	Cowan 2005
4710	1.50	-3.20	1.75	-0.93	60000/150	Sneden 2000

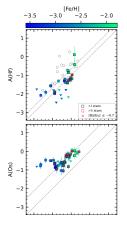
 \rightarrow Caution when using data from large compilations like SAGA and JINABase.

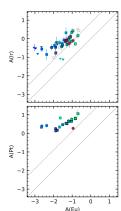
Okay, so what is next


- Most observations and analysis have focused on finding the most metal-poor, most r-process enhanced stars, resulting in single star analysis from many sources.
- Focus is now moving to better statistics for all *r*-process enrichment levels and better metallicity coverage.
- Homogeneous analysis of larger samples.
- Also focus on stellar birth environment.

MINCE (Measuring at Intermediate metallicity Neutron-Capture Elements)

Probing a new metallicity range and tracing the stellar birth environment. See talk by Francesca Lucertini



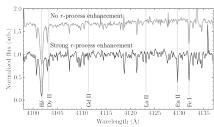


13/29

CERES (Chemical Evolution of R-process Elements in Stars)

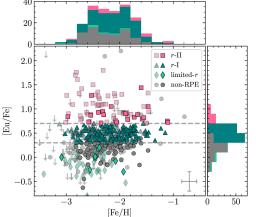
Homogeneous analysis of stars with a range of r-process enrichment levels. See talk by Linda Lombardo

Puls+ 2025



R-Process Alliance

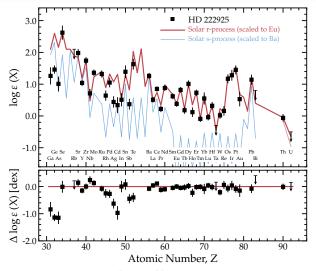
- 1) A large sample of metal-poor stars for robust r-process enhancement statistics.
- 2) A large sample of r-process enriched stars sufficiently bright to detect all elements needed to study the variations in the r-process.
 - ullet Bright, V < 13.5
 ightarrow can observe many stars in short time
 - \bullet Cold, $4000 < T_{\rm eff} < 5500 \rightarrow$ Get Sr, Ba, and Eu abundances or good upper limits
 - Metal poor, $[{\rm Fe/H}] < -2 \to {\rm Only}$ few nucleosynthesis events



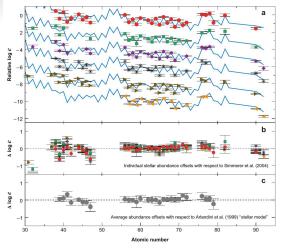
RPA - Current results

747 stars with $\rm [Eu/Fe]$ abundances before RPA, we have added 600 in DR1-5, including 70 $\it r$ -II stars. Next stop 2000!

ightarrowNew data driven classification of $r ext{-II}$ stars: $[Eu/Fe] \geq 0.7$

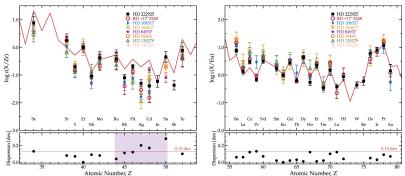

Hansen+ 2018, Sakari+ 2018, Ezzeddine+ 2020, Holmbeck+ 2020, Bandyopadhyay+ 2024

HD 222925 - The golden standard


$$V = 9.02$$
, [Fe/H]=-1.46, [Eu/Fe]=1.32

R-process enhanced star pattern

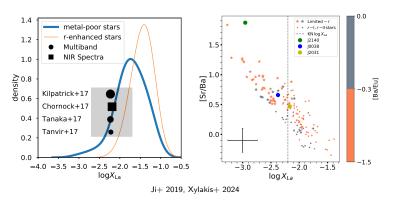
- CS 22892-052: Sneden et al. (2003)
 HD 115444: Westin et al. (2000)
 RD+17°32/817: Cowan et al. (2002)
- ◆ BD+17°324817: Cowan et al. (2002) * CS 31082-001: Hill et al. (2002)
 - HD 221170: Ivans et al. (2006)


 1: Frebel et al. (2007)

- Highly r-process enhanced stars are rare \rightarrow 3-5%
- All show similar ratios for elements from Ba-HF → universal pattern.
- Scatter in light elements → multiple sites?
- Scatter in actinides
 → actinide boost.

Light element universality

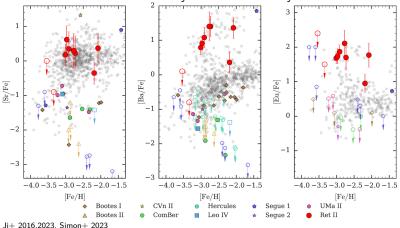
Stars with Se or Te detections, $-0.22 < {\rm [Eu/Fe]} < 1.32$


ightarrow There is a universality in the production of the light elements similar to the heavy elements, but the ratio of light to heavy varies from star to star. Roederer, RPA+ 2022b

Lanthanide fractions of r-process stars as constraint on site

Select stars with $[\mathrm{Ba/Eu}] < -0.4$ and calculate $X_{La} = M_{lan}/M_{tot}$

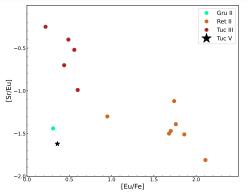
ightarrow 2017 kilonova match low Eu stars, to match high Eu stars \sim 10% of future kilonovae should have $X_{LA}>10^{-1.5}$



R-process enhanced stars in ultra-faint dwarf galaxies

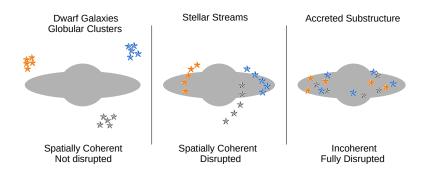
Reticulum II - 70% of the stars are r-process enhanced.

Enrichment event with a delay time of \sim 500Myr



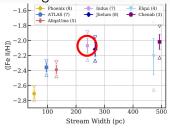
R-process enhanced stars in ultra-faint dwarf galaxies

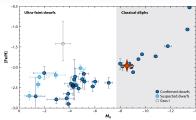
Also r-process enhances stars in Grus II, Tucana III, and Tucana V

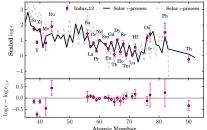

ightarrow similar ratios of light (Sr) to heavy (Eu) elements might suggests similar enrichment sites in Gru II, Ret II, and Tuc V, but we need more stars.

Hansen+ 2018,2020,2024

Substructures in and around the Milky Way

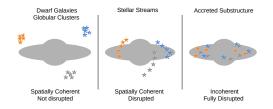


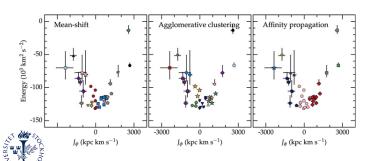




R-process enhanced streams

Investigation of the Indus stream with S^5 collaboration.




 \rightarrow Star with [Eu/Fe] = 1.81born in a galaxy with a mass similar to Ursa Minor See Asa talk for more on classical dwarf galaxies (Hansen+ 2021, Ji+ 2021, Simon 2019).

Substructures in and around the Milky Way Most of the r-II stars are accreted (Roederer+ 2018)

Terese T. Hansen

Combining abundances and Gaia

Different r-process production sites:

Frequency of production sites:

One dominant site

Two sites?

Prolificness of production sites:

One site that is always very prolific?

Another site not so much?

Or similar output, maybe depending on the size of the system

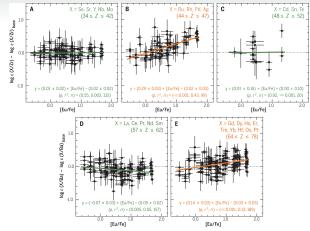
Future - surveys and new telescopes/instruments

Current surveys

Upcoming surveys

New telescopes/instruments

ANDES, G-CLEF, HRMOS, CUBES


Summary

- *r*-process enriched stars has been known for 30 years.
- Past focus on most metal-poor and most r-process enhanced, leading to single star analysis.
- New work from CERES, MINCE, and RPA has a focus on all levels of enrichment, broad metallicity range, and homogeneous analysis.
- New definition of r-II stars at [Fe/Eu] > 0.7 and possible universality amoung light r-process elements.
- Future will bring more stars and options for exploring stellar birth environments.

Fission fragments

Light r-process elements Ru, Rh, Pd, and Ag, and heavy r-process elements Gd, Dy, Ho, Er, Tm, Yb, Hf, Os, and Pt seems to be affected by fission fragment deposition (Roederer, RPA+ 2023).

