Measurements of the s process neutron sources s, i & r Element Nucleosynthesis, Giulianova, IT

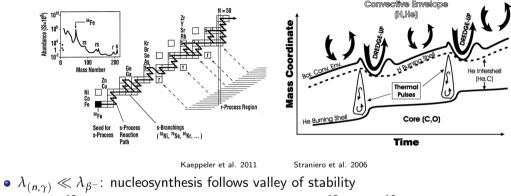
INFN Naples University of Naples "Federico II"

A. Best (UniNa/INFN-Na)

erc

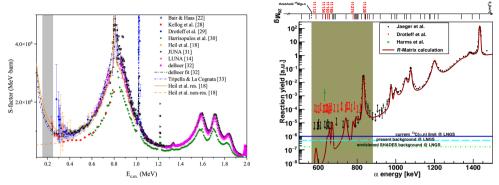
European Research Counci

LUN


s neutron measurements

June 10, 2025

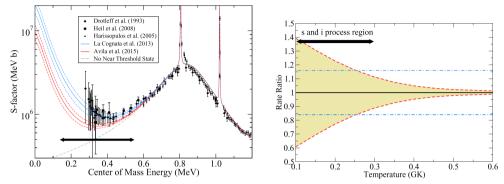
・ 何 ト ・ ヨ ト ・ ヨ


1/12

s process

- Main s: ¹³C pocket in thermally pulsing AGB stars ${}^{13}C(\alpha, n){}^{16}O$
- $^{13}\text{C}(\alpha,\,n)^{16}\text{O}\colon$ T \approx 90 MK, energy range 140 230 keV
- ${}^{22}Ne(\alpha, n){}^{25}Mg$ late stages of main s process
- $\bullet\,$ Strong, short neutron burst, T ≈ 250 MK: branch points
- 22 Ne(α , n) 25 Mg main source for *weak s* in massive stars: 60 < A < 90

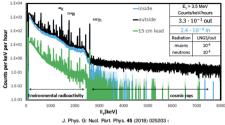
neutron source cross sections

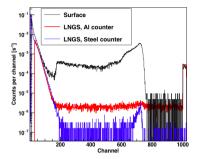

Csedreki et al. J Phys G 51 105201 (2024)

R matrix courtesy of R. deBoer (JINA)

- To model s process yields, require low energy source cross sections
- ${}^{13}C(\alpha, n){}^{16}O: Q = 2.216 \text{ keV}$, "valley" between broad resonance and near threshold state
- ${}^{22}Ne(\alpha, n){}^{25}Mg$: Q = 478 keV, high level density, many possible resonances
- In both cases, reaction yield counts/hour or less very difficult to measure
- Indirect infomation helps but does not provide full picture

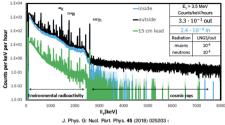
A. Best (UniNa/INFN-Na)


$^{13}C(\alpha,n)^{16}O$

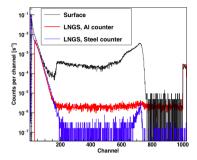

- A lot of direct measurements, inconsistent normalization
- Near threshold state ANC, energy + n width measurements (see deBoer et al PRC 101 45802 (2020))
- Background too strong on surface to go lower in E
- Direct campaigns moved underground (LUNA, JUNA, CASPAR)
- THM data exist, but either anchored to ANC or to high E cross section

4/12

Why go underground? (it's cold, dark, wet...)

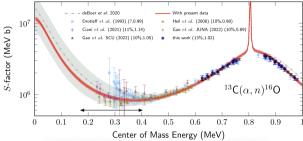


- Muons major high-energy (> 3 MeV) background in γ-detection
- Cosmic muons absorbed by rock
- "Automatic" suppression by 3 o.o.m
- Below 3 MeV bg comes from rocks etc, but can build very massive shield
- 3 o.o.m. reduction achieved with lead, copper, radon box

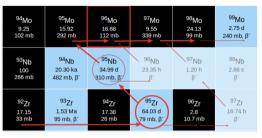


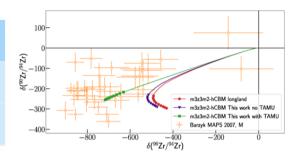
- Atmospheric neutrons removed
- Remainder (10^{-3}) : decays in environment
- Material choice now makes a difference
- Add PSD and passive shielding
- Example: ¹³C(α,n)¹⁶O 1 bg count/hour with 18 ³He counters

Why go underground? (it's cold, dark, wet...)



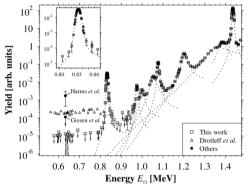
- Muons major high-energy (> 3 MeV) background in γ-detection
- Cosmic muons absorbed by rock
- "Automatic" suppression by 3 o.o.m
- Below 3 MeV bg comes from rocks etc, but can build very massive shield
- 3 o.o.m. reduction achieved with lead, copper, radon box


- Atmospheric neutrons removed
- Remainder (10^{-3}) : decays in environment
- Material choice now makes a difference
- Add PSD and passive shielding
- Example: ¹³C(α,n)¹⁶O 1 bg count/hour with 18 ³He counters

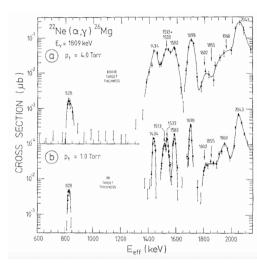

$^{13}C(\alpha,n)^{16}O$ "annus mirabilis"

- Ciani et al. PRL 127 (2021), 152701 LUNA
- Gao et al. PRL 129, 132701 (2022) JUNA
- de Boer et al. PRL 132, 062702 (2024) OSU (> 800 keV)
- Two parallel "competing" underground campaigns
- Also higher energy campaign
- \bullet Detailed combined analysis \rightarrow now have a consistent picture for s process energies
- Another JUNA paper in preparation, planning on releasing consensus recommended rate

$^{22}\mathsf{Ne}(lpha,[\mathit{n},\gamma])^{25,26}\mathsf{Mg}$


Adsley et al. PRC 103, 015805

- $^{22}Ne(\alpha, n)^{25}Mg$ contributes during late stages of main s process
- Determines branch point population
- Main source for weak s process
- $\bullet\,$ Mg isotope observations in stellar atmospheres: γ vs. n channel
- Both channels important, both channels highly uncertain
- D. Mercogliano on Thursday 9:30: γ channel
 - T. Chillery poster
 - D. Rapagnani poster / talk Friday???


A. Best (UniNa/INFN-Na)

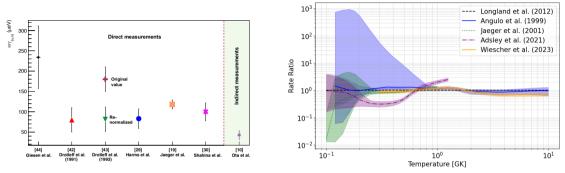
✓ □ ▶ < □ ▶ < □ ▶ < □ ▶
June 10, 2025

State of the Art

- (α, n) : Jaeger et al. 2001
- (α, γ) : Wolke et al. 1989
- Some remeasurements at $E_{\alpha}=835~\text{keV}$ since then (Hunt et al. 2019, Shahina et al. x2 (2022/24))

Low-energy states

Table 1. Properties of states in ²⁶Mg between the neutron threshold and the 832 keV resonance. Values taken from [15], except for the last row, which is from [14].


E _n [keV]	E _x [keV]	E _α [keV]	Jπ	Neutron width [eV]
19.92	11112	589	2+	2095
72.82	11163	649	2+	5310
79.23	11169	656	3-	1940
187.95	11274	779	2+	410
194.01	11280	786	3-	1810
243.98	11328	843 ?	?	171
235 [14]	11319	832	2+	Total width = 250 eV

• nTOF study of energies and neutron widths (Massimi et al. PLB 768 (2017), 1)

- 835 keV res still a bit unclear w.r.t. n/α channel, energy
- No α widths are known
- Many other indirect data campaigns, not conclusive

3

Recent progress



- Bunch of nuclear transfer/scattering experiments
- Comprehensive synthesis in Longland et al. 2012
- Measurements Adsley et al., Talwar et al. Jaytissa et al.....
- Situation summarized in Adsley et al. 103, 015805 (2021)
- Updated in Wiescher et al. EPJ A (2023) 59:11
- Updated again + outlook in Best et al. EPJ A (2025) 61:99

Local efforts

- 22 Ne(α , n) 25 M: SHADES ERC project @ LNGS to close this year: D. Mercogliano
- $^{22}{\rm Ne}(\alpha,\gamma)^{26}{\rm Mg:}$ EAS γ MUR project @ LNGS to start next year: D. Vagnoni
- ²²Ne(⁷Li, t)²⁶Mg: S2223 TRIUMF w. EMMA-TIGRESS 12/2024: T. Chillery

Summary

- ${}^{13}C(\alpha,n){}^{16}O$: worldwide effort has pushed data to a good spot
- ${}^{22}Ne(\alpha, [n, \gamma]){}^{25,26}Mg$
 - Steady influx of indirect data, need some direct input
 - \blacktriangleright Push direct cross section into Gamow energy with SHADES/EAS $\!\gamma$
 - LUNA campaign ongoing, sensitivity now surpasses Jaeger et al.
 - ► CASPAR measurement of 835 keV res. done, some systematic problems
 - JUNA direct UG campaign in preparation
 - Indirect recently at TRIUMF (EMMA-TIGRESS), planned at Texas A&M and more