Image : Ring Nebula

credits : ESA/Webb, NASA, CSA, M. Barlow, N. Cox, R. Wesson

# Theory of the intermediate neutron capture process

Arthur Choplin Université Libre de Bruxelles, Belgium

sirEN conference, June 8 - 13, 2025



**ULB** 

Neutron capture processes

## -> responsible for the synthesis of most heavy elements in the Universe

### Neutron capture processes: slow







### The i-process is a recent and growing topic







 i-process can happen when Hydrogen is mixed proton into a convective Helium-burning zone ingestion



 i-process can happen when Hydrogen is mixed proton into a convective Helium-burning zone ingestion

#### Alternative names :

- H-flash (e.g. Iwamoto+2004)
- Dual shell flash (e.g. Campbell+2008)
- He-flash driven deep mixing (e.g. Suda+2010)
- •







 i-process can happen when Hydrogen is mixed proton into a convective Helium-burning zone ingestion





#### ·Carbon enhanced metal-poor (CEMP) r/s stars

Jonsell+2006, Roederer+2016, Caffau+2019, Goswami+2022, Karinkuzhi+2021,2023, Hansen+2023 ...

•Barium stars —> talk by B. Cseh Roriz+2021,2024, Cseh+2022, den Hartogh+2023...

#### ·AGB / post-AGB stars

Lugaro+2015, Hampel+2019, Choplin+2024...

#### Subdwarfs

Dorsch+2020, Battich+2025...

#### Open clusters

Mishenina+2015, ...

#### Sakurai's object

Herwig+2011

•**Pre-solar grains** —> *talks by N. Liu, M. Jadhav* Fujiya+2013, Jadhav+2013, Liu+2014, Choplin+2024

#### Solar System abundances

Côté+2019

—> talks by R. Giribaldi, A. Goswami

#### ·Carbon enhanced metal-poor (CEMP) r/s stars

Jonsell+2006, Roederer+2016, Caffau+2019, Goswami+2022, Karinkuzhi+2021,2023, Hansen+2023 ... —> talks by R. Giribaldi, A. Goswami

•Barium stars —> talk by B. Cseh Roriz+2021,2024, Cseh+2022, den Hartogh+2023...

#### ·AGB / post-AGB stars

Lugaro+2015, Hampel+2019, Choplin+2024...

#### Subdwarfs

Dorsch+2020, Battich+2025...

#### Open clusters

Mishenina+2015, ...

#### Sakurai's object

Herwig+2011

•**Pre-solar grains** —> talks by N. Liu, M. Jadhav Fujiya+2013, Jadhav+2013, Liu+2014, Choplin+2024

#### Solar System abundances

Côté+2019

Existence of observational constraints that cannot be resolved within the s- and r-processes

#### ·Carbon enhanced metal-poor (CEMP) r/s stars

Jonsell+2006, Roederer+2016, Caffau+2019, Goswami+2022, Karinkuzhi+2021,2023, Hansen+2023 ... —> talks by R. Giribaldi, A. Goswami

•Barium stars —> talk by B. Cseh Roriz+2021,2024, Cseh+2022, den Hartogh+2023...

#### ·AGB / post-AGB stars

Lugaro+2015, Hampel+2019, Choplin+2024...

#### Subdwarfs

Dorsch+2020, Battich+2025...

#### Open clusters

Mishenina+2015, ...

Existence of observational constraints that cannot be resolved within the s- and r-processes

i-process is a possible solution

## Sakurai's object

Herwig+2011

•**Pre-solar grains** —> talks by N. Liu, M. Jadhav Fujiya+2013, Jadhav+2013, Liu+2014, Choplin+2024

#### Solar System abundances

Côté+2019

#### ·Carbon enhanced metal-poor (CEMP) r/s stars

Jonsell+2006, Roederer+2016, Caffau+2019, Goswami+2022, Karinkuzhi+2021,2023, Hansen+2023 ...

•Barium stars —> talk by B. Cseh Roriz+2021,2024, Cseh+2022, den Hartogh+2023...

- •AGB / post-AGB stars Lugaro+2015, Hampel+2019, Choplin+2024...
- •Subdwarfs

Dorsch+2020, Battich+2025...

•Open clusters

Mishenina+2015, ...

•Sakurai's object

Herwig+2011

•**Pre-solar grains** —> *talks by N. Liu, M. Jadhav* Fujiya+2013, Jadhav+2013, Liu+2014, Choplin+2024

#### • Solar System abundances Côté+2019

—> talks by R. Giribaldi, A. Goswami

Existence of observational constraints that cannot be resolved within the s- and r-processes

-process is a possible solution



5

Т









#### • Asymptotic giant branch (AGB) stars + super AGB

Fujimoto+2000, Iwamoto+2004, Siess+2007, Campbell+2008, Lau+2009, Suda+2010, Stancliffe+2011, Cristallo+2009,2016,2018, Jones+2016, Choplin+2021,2022,2024,2025 Goriely+2021, Gil-Pons+2022, Remple+2024...

#### Accreting white dwarfs

Denisenkov+2017,2019,2021, Piersanti+2019, Stephens+2021 ...

-> talk by L. Piersanti





#### Massive stars

Marigo+2001, Hirschi 2007, Ekstrom+2008, Heger+2010, Limongi+2012, Pignatari+2015, Choplin+2017, Ritter+2018, Banerjee+2018, Clarkson+2018,2021...

#### • Core Helium flash

Helium 106 Flash Main Sequence Red Giant Horizontal Branch Branch H-core exhaustion 10 · 40.000 20.000 10.000 5.000 2.500 Temperature (K)

Fujimoto+1990, Schlattl+2001, Campbell+2010, Cruz+2013, Battich+2023, 2025...



#### Post-AGB stars

Herwig+2001, Miller Bertolami 2006, Herwig+2011...



(No proton ingestion -> different mechanism)



#### • Asymptotic giant branch (AGB) stars + super AGB

Fujimoto+2000, Iwamoto+2004, Siess+2007, Campbell+2008, Lau+2009, Suda+2010, Stancliffe+2011, Cristallo+2009,2016,2018, Jones+2016, Choplin+2021,2022,2024,2025, Goriely+2021, Gil-Pons+2022, Remple+2024...

#### Accreting white dwarfs

Denisenkov+2017,2019,2021, Piersanti+2019, Stephens+2021 ...

-> talk by L. Piersanti





#### Massive stars

Marigo+2001, Hirschi 2007, Ekstrom+2008, Heger+2010, Limongi+2012, Pignatari+2015, Choplin+2017, Ritter+2018, Banerjee+2018, Clarkson+2018, 2021...

#### • Core Helium flash Fujimoto+1990, Schlattl+2001, Campbell+2010

Cruz+2013, Battich+2023, 2025...

10<sup>6</sup> 10<sup>4</sup> 10<sup>4</sup> 10<sup>2</sup> 10<sup>2</sup> 10<sup>2</sup> 10<sup>-2</sup> 10<sup>-4</sup> 40,000 20,000 10,000 5,000 2,500 Temperature (K)

Helium



## Post-AGB stars

Herwig+2001, Miller Bertolami 2006, Herwig+2011...

• Collapsars jets (?)





(No proton ingestion -> different mechanism)

![](_page_22_Picture_1.jpeg)

#### • Asymptotic giant branch (AGB) stars + super AGB

Fujimoto+2000, Iwamoto+2004, Siess+2007, Campbell+2008, Lau+2009, Suda+2010, Stancliffe+2011, Cristallo+2009,2016,2018, Jones+2016, Choplin+2021,2022,2024,2025 Goriely+2021, Gil-Pons+2022, Remple+2024...

![](_page_23_Picture_1.jpeg)

#### • Asymptotic giant branch (AGB) stars + super AGB

Fujimoto+2000, Iwamoto+2004, Siess+2007, Campbell+2008, Lau+2009, Suda+2010, Stancliffe+2011, Cristallo+2009,2016,2018, Jones+2016, Choplin+2021,2022,2024,2025 Goriely+2021, Gil-Pons+2022, Remple+2024...

—> end of life of ~ 0.8 - 8  $M_{\odot}$  stars

—> strong stellar winds

—> complex interplay between nucleosynthesis and mixing

#### **Reviews on AGB**

- Busso+1999, ARA&A
- Herwig 2005, ARA&A
- Karakas+2014, PASA

![](_page_23_Figure_11.jpeg)

![](_page_24_Picture_1.jpeg)

#### • Asymptotic giant branch (AGB) stars + super AGB

Fujimoto+2000, Iwamoto+2004, Siess+2007, Campbell+2008, Lau+2009, Suda+2010, Stancliffe+2011, Cristallo+2009,2016,2018, Jones+2016, Choplin+2021,2022,2024,2025 Goriely+2021, Gil-Pons+2022, Remple+2024...

→ end of life of ~ 0.8 - 8 M<sub>☉</sub> stars
→ strong stellar winds
→ complex interplay between nucleosynthesis and mixing
→ ongoing heavy element nucleosynthesis

(because **Tc** is present) *Merrill 1952, ...* 

#### **Reviews on AGB**

- Busso+1999, ARA&A
- Herwig 2005, ARA&A
- Karakas+2014, PASA

![](_page_24_Figure_10.jpeg)

![](_page_25_Picture_1.jpeg)

#### • Asymptotic giant branch (AGB) stars + super AGB

Fujimoto+2000, Iwamoto+2004, Siess+2007, Campbell+2008, Lau+2009, Suda+2010, Stancliffe+2011, Cristallo+2009,2016,2018, Jones+2016, Choplin+2021,2022,2024,2025 Goriely+2021, Gil-Pons+2022, Remple+2024...

![](_page_25_Figure_4.jpeg)

#### **Reviews on AGB**

- Busso+1999, ARA&A
- Herwig 2005, ARA&A
- Karakas+2014, PASA

![](_page_25_Figure_9.jpeg)

![](_page_26_Picture_1.jpeg)

#### • Asymptotic giant branch (AGB) stars + super AGB

**Convective envelope** 

Main

star

**He-burning** 

shell

eauence

Fujimoto+2000, Iwamoto+2004, Siess+2007, Campbell+2008, Lau+2009, Suda+2010, Stancliffe+2011, Cristallo+2009,2016,2018, Jones+2016, Choplin+2021,2022,2024,2025 Goriely+2021, Gil-Pons+2022, Remple+2024...

![](_page_26_Figure_4.jpeg)

#### Structure evolution of an AGB star

![](_page_27_Figure_2.jpeg)

![](_page_28_Figure_0.jpeg)

![](_page_29_Figure_0.jpeg)

![](_page_30_Figure_0.jpeg)

![](_page_31_Figure_0.jpeg)

The i-process engine (1  $M_{\odot}$ , [Fe/H] = -2.5, AGB model)

![](_page_32_Figure_1.jpeg)

# The i-process engine (1 $M_{\odot}$ , [Fe/H] = -2.5, AGB model)

![](_page_33_Figure_1.jpeg)

# The i-process engine (1 $M_{\odot}$ , [Fe/H] = -2.5, AGB model)

![](_page_34_Figure_1.jpeg)

![](_page_35_Figure_0.jpeg)


The i-process engine (1  $M_{\odot}$ , [Fe/H] = -2.5, AGB model)

STAREVOL code 0.57 convective envelope 0.56 1014 Neutron density [cm<sup>-3</sup>] H-burning 0.55 convective protons 1013 thermal pulse ⊙ 0.54 **-** $^{12}C(p_{\gamma})^{13}N(\beta^{+})^{13}C$ ≥ັ 0.53 10<sup>12</sup> 0.52 1011 **Proton ingestion** T ~ 250 MK happens naturally <sup>13</sup>C(α, n) -process < 10<sup>10</sup> 0.50 -90220 90160 90180 90200 90240 model ► Time  $\Delta t \sim 0.1 \text{ yr}$ 

The i-process engine (1  $M_{\odot}$ , [Fe/H] = -2.5, AGB model)

STAREVOL code 0.57 convective envelope 0.56 1014 Neutron density [cm<sup>-3</sup>] H-burning 0.55 convective protons 1013 thermal pulse [⊙ 0.54 **-**[]  $^{12}C(p,\gamma)^{13}N(\beta^{+})^{13}C$ ≥ 0.53 10<sup>12</sup> 0.52  $10^{11}$ **Proton ingestion** T ~ 250 MK happens naturally <sup>13</sup>C(α, n) -process  $< 10^{10}$ ~ similar engine in (almost) 90220 90240 all i-process sites... model ► Time  $\Delta t \sim 0.1 \text{ yr}$ 

# The i-process engine (1 $M_{\odot}$ , [Fe/H] = -2.5, AGB model)

STAREVOL code

![](_page_39_Figure_2.jpeg)

### Mass coordinate

![](_page_40_Figure_2.jpeg)

#### schematic view

#### Mass coordinate

![](_page_41_Figure_3.jpeg)

### Structure evolution of an AGB star The i-process

schematic view

Mass coordinate

![](_page_42_Figure_3.jpeg)

### Structure evolution of an AGB star The i-process

schematic view

![](_page_43_Figure_2.jpeg)

![](_page_44_Figure_2.jpeg)

![](_page_45_Figure_1.jpeg)

![](_page_46_Figure_1.jpeg)

# Astrophysical sites for proton ingestion / i-process

![](_page_47_Picture_1.jpeg)

### • Asymptotic giant branch (AGB) stars + super AGB

Fujimoto+2000, Iwamoto+2004, Siess+2007, Campbell+2008, Lau+2009, Suda+2010, Stancliffe+2011, Cristallo+2009,2016,2018, Jones+2016, Choplin+2021,2022,2024,2025 Goriely+2021, Gil-Pons+2022, Remple+2024...

#### Accreting white dwarfs

Denisenkov+2017,2019,2021, Piersanti+2019, Stephens+2021 ...

-> talk by L. Piersanti

![](_page_47_Picture_7.jpeg)

![](_page_47_Picture_8.jpeg)

#### Massive stars

Marigo+2001, Hirschi 2007, Ekstrom+2008, Heger+2010, Limongi+2012, Pignatari+2015, Choplin+2017, Ritter+2018, Banerjee+2018, Clarkson+2018,2021...

#### • Core Helium flash

![](_page_47_Picture_12.jpeg)

Fujimoto+1990, Schlattl+2001, Campbell+2010, Cruz+2013, Battich+2023, 2025...

![](_page_47_Picture_14.jpeg)

### Post-AGB stars

Herwig+2001, Miller Bertolami 2006, Herwig+2011...

• Collapsars jets (?) He+2024 -> talk by Z. He

(No proton ingestion -> different mechanism)

# Astrophysical sites for proton ingestion / i-process

![](_page_48_Picture_1.jpeg)

#### Asymptotic giant branch (AGB) stars + super AGB

Fujimoto+2000, Iwamoto+2004, Siess+2007, Campbell+2008, Lau+2009, Suda+2010, Stancliffe+2011, Cristallo+2009,2016,2018, Jones+2016, Choplin+2021,2022,2024,2025 Goriely+2021, Gil-Pons+2022, Remple+2024...

#### Accreting white dwarfs

Denisenkov+2017,2019,2021, Piersanti+2019, Stephens+2021 ... —> talk by L. Piersanti

![](_page_48_Picture_6.jpeg)

![](_page_48_Picture_7.jpeg)

### Massive stars

Marigo+2001, Hirschi 2007, Ekstrom+2008, Heger+2010, Limongi+2012, Pignatari+2015, Choplin+2017, Ritter+2018, Banerjee+2018, Clarkson+2018,2021...

# Core Helium flash Fujimoto+1990, Schlattl+2001, Campbell+2010,

Cruz+2013. Battich+2023. 2025.

![](_page_48_Figure_11.jpeg)

![](_page_48_Picture_12.jpeg)

#### Post-AGB stars

Herwig+2001, Miller Bertolami 2006, Herwig+2011...

• Collapsars jets (?) He+2024 -> talk by Z. He

(No proton ingestion —> different mechanism)

## proton ingestion / i-process in massive stars

![](_page_49_Figure_1.jpeg)

# proton ingestion / i-process in massive stars

![](_page_50_Figure_1.jpeg)

11

e.g. Marigo+2001, Hirschi 2007, Ekstrom+2008,

Heger+2010, Limongi+2012, Ritter+2018, ...

## proton ingestion / i-process in massive stars

![](_page_51_Figure_1.jpeg)

# Astrophysical sites for proton ingestion / i-process

![](_page_52_Picture_1.jpeg)

#### Asymptotic giant branch (AGB) stars + super AGB

Fujimoto+2000, Iwamoto+2004, Siess+2007, Campbell+2008, Lau+2009, Suda+2010, Stancliffe+2011, Cristallo+2009,2016,2018, Jones+2016, Choplin+2021,2022,2024,2025 Goriely+2021, Gil-Pons+2022, Remple+2024...

#### Accreting white dwarfs

Denisenkov+2017,2019,2021, Piersanti+2019, Stephens+2021 ... —> talk by L. Piersanti

![](_page_52_Picture_6.jpeg)

![](_page_52_Picture_7.jpeg)

#### Massive stars

Marigo+2001, Hirschi 2007, Ekstrom+2008, Heger+2010, Limongi+2012, Pignatari+2015, Choplin+2017, Ritter+2018, Banerjee+2018, Clarkson+2018,2021...

### Core Helium flash

![](_page_52_Figure_11.jpeg)

Fujimoto+1990, Schlattl+2001, Campbell+2010, Cruz+2013, Battich+2023, 2025...

![](_page_52_Picture_13.jpeg)

#### • Post-AGB stars

Herwig+2001, Miller Bertolami 2006, Herwig+2011...

• Collapsars jets (?) He+2024 —> talk by Z. He

(No proton ingestion -> different mechanism)

Hot-subdwarfs stars are :  $\longrightarrow e.g.$  Heber 2016

-> stripped red giants (due to binary interaction ?) with thin (~10<sup>-4</sup> M\_{\odot}) H-rich envelope left

-> chemically peculiar (most of them)

![](_page_54_Figure_1.jpeg)

Hot-subdwarfs stars are :  $\longrightarrow e.g.$ 

—> e.g. Heber 2016

-> stripped red giants (due to binary interaction ?) with thin (~10<sup>-4</sup> M\_{\odot}) H-rich envelope left

-> chemically peculiar (most of them)

Battich+2023, 2025

![](_page_55_Figure_1.jpeg)

Battich+2023, 2025

Hot-subdwarfs stars are :  $- e_{e}$ 

—> e.g. Heber 2016

-> stripped red giants (due to binary interaction ?) with thin (~10<sup>-4</sup> M\_{\odot}) H-rich envelope left

-> chemically peculiar (most of them)

LPCODE + ANT (post-processing) 1200 isotopes

| Metallicity           | Max neut.<br>dens. [cm <sup>-3</sup> ]            |
|-----------------------|---------------------------------------------------|
| Z⊙                    | <b>10<sup>9</sup> - 10</b> <sup>10</sup>          |
| $Z_{\odot}$ / 10      | <b>10</b> <sup>11</sup> - <b>10</b> <sup>13</sup> |
| $Z_{\odot}$ / 100     | 10 <sup>14</sup> - 10 <sup>15</sup>               |
| i-process can develop |                                                   |

![](_page_56_Figure_1.jpeg)

![](_page_57_Figure_1.jpeg)

12

# The i-process engine (1 $M_{\odot}$ , [Fe/H] = -2.5, AGB model)

STAREVOL code

![](_page_58_Figure_2.jpeg)

![](_page_59_Figure_1.jpeg)

![](_page_60_Figure_1.jpeg)

![](_page_61_Figure_1.jpeg)

Ciani+2021 (LUNA), Gao+2022 (JUNA) : overall uncertainty is ~ 20% <

![](_page_62_Figure_1.jpeg)

![](_page_63_Figure_1.jpeg)

![](_page_64_Figure_1.jpeg)

![](_page_65_Figure_1.jpeg)

![](_page_66_Figure_1.jpeg)

![](_page_67_Figure_1.jpeg)

![](_page_68_Figure_1.jpeg)

#### **i-process** flow at the bottom of the thermal pulse Production of actinides (Th and U) [Fe/H] = -2.5, $N_{n,max} = 2.2 \times 10^{15} \text{ cm}^{-3}$ 1 M⊙, 100 -Main path Cf Secondary paths Bk - 10<sup>-2</sup> Cm 🗌 Stable / long-lived isotopes 95 Am Number of protons Pu Np - 10-4 Pa 90. Th Ac Ra $+10^{-6} \times$ Fr Rn 85 -At Po 10-8 Bi Pb 80 -10-10 75 120 150 125 130 135 140 145 155 160 Number of neutrons

Choplin+2022,2025 Vassh+2024

#### **i-process** flow at the bottom of the thermal pulse Production of actinides (Th and U) $[Fe/H] = -2.5, N_{n,max} = 2.2 \times 10^{15} \text{ cm}^{-3}$ 1 M⊙, 100 -Main path Cf Secondary paths Bk $-10^{-2}$ Cm Stable / long-lived isotopes 95 Am Number of protons Pu Np $-10^{-4}$ Pa 90 Τh Ac Ra $+10^{-6} \times$ Fr Rn 85 -At Po • $N_n < 5 \times 10^{14} \text{ cm}^{-3}$ 10<sup>-8</sup> -> cycle in the Pb-Bi-Po region Pb -> no Th, U, ... synthesized 80 - $-10^{-10}$ 75 120 125 130 135 140 145 150 155 160 Number of neutrons

Choplin+2022,2025 Vassh+2024

#### **i-process** flow at the bottom of the thermal pulse Production of actinides (Th and U) $1 M_{\odot}$ , [Fe/H] = -2.5, N<sub>n,max</sub> = 2.2 x $10^{15}$ cm<sup>-3</sup> 100 -Main path Cf Secondary paths Bk $-10^{-2}$ Cm Stable / long-lived isotopes 95 Am Number of protons Pu Np $-10^{-4}$ Pa 90 Th Ac Ra $+10^{-6}$ $\times$ Fr Rn 85 -At Po • $N_n < 5 \times 10^{14} \text{ cm}^{-3}$ 10<sup>-8</sup> Bi -> cycle in the Pb-Bi-Po region Pb -> no Th, U, ... synthesized 80 - $-10^{-10}$ • $N_n > 5 \times 10^{14} \text{ cm}^{-3}$ -> cycle broken -> Th, U can be synthesized 75 120 125 130 135 140 145 150 155 160 Number of neutrons

Choplin+2022,2025 Vassh+2024
#### **i-process** flow at the bottom of the thermal pulse Production of actinides (Th and U) $1 M_{\odot}$ , [Fe/H] = -2.5, N<sub>n,max</sub> = 2.2 x $10^{15}$ cm<sup>-3</sup> 100-Main path Cf Secondary paths Bk - 10<sup>-2</sup> Cm 🗌 Stable / long-lived isotopes 95 Am Number of protons Pu Np - 10-4 Pa 90-Th Ac s-process ends here $+10^{-6} \times$ (Clayton & Rassbach 1967) 85 At 10<sup>-8</sup> Pb r-process goes up 80 -10-10 75 120 150 125 130 135 140 145 155 160 Number of neutrons

#### **i-process** flow at the bottom of the thermal pulse Production of actinides (Th and U) $1 M_{\odot}$ , [Fe/H] = -2.5, N<sub>n,max</sub> = 2.2 x $10^{15}$ cm<sup>-3</sup> 100-Main path Cf Secondary paths Bk - 10<sup>-2</sup> Cm Stable / long-lived isotopes 95 Am Number of protons Pu Np - 10-4 Pa 90-Th Ac s-process ends here i-process $+10^{-6} \times$ (Clayton & Rassbach 1967) also 85 At 10<sup>-8</sup> Pb r-process goes up 80 - $-10^{-10}$ 75 120 150 125 130 135 140 145 155 160 Number of neutrons

#### **i-process** flow at the bottom of the thermal pulse Production of actinides (Th and U) $1 M_{\odot}$ , [Fe/H] = -2.5, N<sub>n,max</sub> = 2.2 x $10^{15}$ cm<sup>-3</sup> 100 -Main path Cf Secondary paths Bk $-10^{-2}$ Cm 🗌 Stable / long-lived isotopes 95 Am Number of protons Pu Np - 10-4 Pa 90. Th Ac Ra $+10^{-6} \times$ Fr Rn 85 -At Po Actinides (Th, U) can be produced : 10<sup>-8</sup> Bi Pb by the **r-process** 80 during extreme events 10-10 75 120 150 125 130 155 160 135 Number of neutrons

#### **i-process** flow at the bottom of the thermal pulse Production of actinides (Th and U) $[Fe/H] = -2.5, N_{n,max} = 2.2 \times 10^{15} \text{ cm}^{-3}$ 1 M⊙, 100 -Main path Cf Secondary paths Bk $-10^{-2}$ Cm 🗌 Stable / long-lived isotopes 95 Am Number of protons Pu Np $-10^{-4}$ Pa 90. Th Ac Ra $-10^{-6} imes$ Fr Rn 85 -At Po Actinides (Th, U) can be produced : 10<sup>-8</sup> Bi Pb by the **r-process** possibly by the **i-process** 80 in AGB stars (or other sites) during extreme events 75 120 150 125 130 155 135 Number of neutrons

#### **i-process** flow at the bottom of the thermal pulse Production of actinides (Th and U) $1 M_{\odot}$ , [Fe/H] = -2.5, N<sub>n,max</sub> = 2.2 x $10^{15}$ cm<sup>-3</sup> 100-Main path Secondary paths Bk $-10^{-2}$ Cm Stable / long-lived isotopes 95 Am Number of protons Pu $-10^{-4}$ Th in the « i-process star » J094921.8-161722 ? 90 —> Talk by R. Giribaldi Ac $+10^{-6}$ × Fr Rn 85 -At Po Actinides (Th, U) can be produced : 10<sup>-8</sup> Bi Pb by the **r-process** possibly by the **i-process** 80 during extreme events in AGB stars (or other sites) 75 150 120 125 130 155 135 Number of neutrons

# At what mass and metallicity does H-ingestion / i-process occur ?

Important for Galactic Chemical Evolution





















# Nucleosynthetic yields of AGB experiencing H-ingestion

Choplin+2022, Choplin+2024



# Nucleosynthetic yields of AGB experiencing H-ingestion

Choplin+2022, Choplin+2024



# Nucleosynthetic yields of AGB experiencing H-ingestion

Choplin+2022, Choplin+2024













Choplin+2025



# i-process in accreting white dwarfs and AGB stars



# i-process in accreting white dwarfs and AGB stars



i-process nucleosynthesis is similar in AGB and accreting white dwarfs



Choplin+2021, 2025



Choplin+2021, 2025







Choplin+2021, 2025



Choplin+2021, 2025

Nuclear uncertainties are large...

# Summary

Ingestion of protons in a convective He-burning zone can trigger the i-process
 —> it can happens naturally in many sites, including AGB stars
 (Nn ~ 10<sup>15</sup> cm<sup>-3</sup>)

# Summary

Ingestion of protons in a convective He-burning zone can trigger the i-process
 —> it can happens naturally in many sites, including AGB stars
 (Nn ~ 10<sup>15</sup> cm<sup>-3</sup>)

Different observationnal indication of the i-process

# Summary

- Ingestion of protons in a convective He-burning zone can trigger the i-process
  —> it can happens naturally in many sites, including AGB stars
  (Nn ~ 10<sup>15</sup> cm<sup>-3</sup>)
- Different observationnal indication of the i-process
- i- and s-process (radiative & convective) can develop in the same AGB
- Actinides (Th and U) can be produced by the i-process
- Nuclear uncertainties ~ 0.5 1 dex (but > 2 dex for actinides)
- Extra mixing (overshoot) facilitates proton ingestion (up to ~ solar metallicity)
- i-process chemical signature becomes small at [Fe/H] > -1 (in AGBs)
## Summary & some open questions

- Ingestion of protons in a convective He-burning zone can trigger the i-process
  —> it can happens naturally in many sites, including AGB stars
  (Nn ~ 10<sup>15</sup> cm<sup>-3</sup>)
- Different observationnal indication of the i-process
- i- and s-process (radiative & convective) can develop in the same AGB
- Actinides (Th and U) can be produced by the i-process
- Nuclear uncertainties ~ 0.5 1 dex (but > 2 dex for actinides)
- Extra mixing (overshoot) facilitates proton ingestion (up to ~ solar metallicity)
- i-process chemical signature becomes small at [Fe/H] > -1 (in AGBs)
- What is / are the i-process sites and their relative contribution ?
- Effect of rotation / magnetic fields ? —> e.g. Piersanti+2013, den Hatogh+2019 for s-process
- Experimental constraints on critical  $(n,\gamma)$  rates  $\longrightarrow$  e.g. Oslo method
- Galactic chemical evolution modeling of the i-process —> e.g. Coté+2018 for accreting WD
- Th and isotopic ratios in « i-process stars » ?
- Dedicated studies on the « split » ? (1D and 3D)
- Results from 3D models can improve 1D models

—> e.g. Stephens+2021, Rizzuti+2023, ...







## The i-process engine (1 $M_{\odot}$ , [Fe/H] = -2.5, AGB model)

STAREVOL code



## The i-process engine (1 $M_{\odot}$ , [Fe/H] = -2.5, AGB model)



## Proton ingestion in a 1 $M_{\odot}$ , [Fe/H] = -2.5, AGB model



### Observational indications of the i process in a CEMP-r/s star



#### i-process AGB models vs. observed r/s-stars (residuals)





#### i-process AGB models vs. observed « i-stars »





Nucleosynthetic yields of AGB experiencing H-ingestion



### AGB s-process vs. AGB i-process



# The case of a 2 M $_{\odot}$ , [Fe/H] = -2.5 AGB model (Z = 4 x 10<sup>-5</sup>)



# The **i-process** in a 1 M<sub> $\odot$ </sub>, [Fe/H] = -2.5 AGB model (Z = 4 x 10<sup>-5</sup>)



A 2 M $_{\odot}$  AGB at [Fe/H] = -0.5 : i- and s-process



#### **Isotopic ratios** predicted by s-, i- and r-processes



0.0-

-3.0

-2.5

-2.0

[Fe/H]

-1.5

-1.0