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Atomic data needs
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All relevant levels & transitions known
Most levels & transitions known
Very incomplete levels & transitions data

Available Experimental Data

LTE modelling  (first few days): 
→ energy levels and E1 radiative transitions  
required: 
Saha & Boltzmann equations
→ bolometric light curves: grey opacities from 
uncalibrated data good enough
→ spectral models: use of calibrated atomic data 
essential for line identification and obtaining the 
relevant spectral features

NLTE modelling  (after a few days): 
→ requires additional atomic data: electron-ion 
impact cross sections, photoionisation & 
recombination cross sections, forbidden (M1 and 
E2) transitions
→ due to lack of atomic data only possible using 
approximations

Credit: A. Flörs 
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Atomic codes
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General use codes - multiple atomic processes High accuracy structure codes

● Fully ab-initio using MC(D)HF or MBPT approaches

● Focused on structure and some radiative properties

● High accuracy

● Computationally demanding
○ Can take months for large scale calculations 

depending on the ion

● E.g. - GRASP*, ATSP*, MCDFGME*, AMBiT, 
CI-MBPT… 

*Can be (usually) coupled to R-matrix codes for 
computation of other properties 

● Usually user-input dependent parameters

● Able to calculate a large number of processes

● Limited accuracy

● Fast and efficient
○ 100 000+ levels and transitions in 

hours/days 

● E.g. - FAC, Hullac, Autostructure , Los Alamos 
Suite, JAC …
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Potential Optimization workflow

● General  optimization procedure can be applied to 
multiple codes requiring direct user input for 
determining local central potential
○ Sequential Model-Based Optimization (SMBO) 

procedure applied to FAC-  RFS+ 25 
(10.48550/ARXIV.2502.13250)

○ Similar application done already in 
AUTOSTRUCTURE (M. Mendez PhD Thesis 
(2021); RFS (in prep.) 

● Flexible  loss function - can be adapted to optimized 
for different needs 
○ Energy levels, transition rates, cross sections…

5

Open source code will be up on GitHub 
soon
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● Optimization has the 
biggest impact in the 
accuracy of energy levels

● Further calibration (using 
Term Matching) is then 
achieved

7

Energy Levels - Lanthanides

Calculations for all singly and doubly ionized lanthanides have been 
achieved
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Energy levels of actinides 
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● Ability to provide improved 
data for where no experimental 
data is available 

SCASA - Selected constants, energy levels and atomic spectra of actinides (Blaise and Wyart 1983)

P=0

P=1

(ΔExp = 8.4%)

(ΔExp = 7.8%)

[R. F. Silva, in prep.]
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Calibration

● All levels are calibrated, either by matching directly to 
NIST or by using an empirical shift based on the 
corrections applied on other levels of same P, J and config

● Line strengths in agreement between calculations, but 
less so with available experimental data - especially for 
stronger lines

10
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Atomic Data for Lte Modelling
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Forbidden Lines

● Doubly ionised lanthanides sufficiently 
well studied experimentally 
(exception: Pm III)

● Most permitted & forbidden transitions 
up to 20 000 - 30 000 cm-1 energy 
calibrated

● Higher number of transitions for singly 
ionized ions makes the fraction of 
levels calibrated lower 

Flörs et al. (in prep.)
13
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Forbidden Lines
Flörs et al. (in prep.)

14
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Hotokezaka et al., MNRAS, 506, 5863 (2021)
Banerjee et al., submitted to ApJ (2025)
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Atomic processes with the continuum
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(Pradhan and Nahar, “Atomic Astrophysics and Spectroscopy”, Cambridge 2011)Ideally, all processes should be computed using the 
same wave function expansion for the bound (N) and 
continuum (N+1) states

Two main methods: 

● Distorted Wave (DW) 
○ Neglects interaction between channels 

(resonances)
○ Fast and efficient
○ FAC, AUTOSTRUCTURE, HULLAC

● Coupled-Cluster (aka R-matrix)
○ Resonances are treated consistently 
○ Very computationally demanding
○ GRASP0+DARC
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Pt II

Impact of optimization on EIE

Levels are calibrated in both 
default and optimized
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Impact of optimization on EIE

● Similar optimization 
procedure for improved 
wavefunctions have shown 
similar effects on collisions 
strengths

M. Mendez PhD Thesis (2021)
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DW  seems to provide significant improvements to the current 
status, based on empirical formulas (VRA):

     → Van Regemorter for allowed, fosc ≥10-3
 

    → Axelrod 1980 for forbidden, fosc <10-3

Y II

Leitão, F. Silva+ (in prep.)

Improving EIE collision rates

Empirical approximations produce PECs 
(“line intensities”) much lower than current 
calculations

DW provide a much better estimate at a 
very low computational cost

19
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Improving EIE collision rates
● DW shows an improvement 

when compared to just 
using the VRA 
approximations -even 
without the inclusion of 
resonances. 

● “Comparable” to R-Matrix - 
but at a much lower 
computational cost 

● Calculations for multiple 
lanthanides have been 
achived

Check out Jorge Sampaio Poster!
R-matrix calculation: McCann+ (2021)

T = 5000 K
ne= 106 cm-3
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Including Resonances
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● Resonances can be 
accounted for in the 
Independent-Process, 
Isolated-Resonance 
Distorted-Wave (IPIRDW) 
Method (see. e.g. L.Xia et al.. 
2017)

● While not as accurate is 
much more computationally 
efficient 
○ Autoionization and 

EIE can be computed 
in parallel 
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Including resonances (Preliminary)

● Calculation of Resonant EIE for multiple lanthanides ongoing

22
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CONCLUSIONS
● We computed the atomic structure of all singly and doubly ionised lanthanide ions

→ total of 28 ions (27 of them calibrated to experimental data)
→ 120 million (E1 + E2 + M1) transitions, of which 220 000 have calibrated wavelengths

● Inaccurate wavefunctions can have major effects in all atomic data parameters computed 
→ Large configurations sets and optimization to available data (when possible) is essential 
when ab-initio calculations are not feasible

● Ongoing calculations of EIE under the DW approximation (DE and RE) for all singly and 
doubly ionized lanthanides
→ Accuracy of wavefunctions can have a strong impact in collision strengths

23



s, i & r Element Nucleosynthesis (sirEN) Conference Ricardo F. Silva

Luis Leitão
Daniel Garcia
Tomás Campante
Jorge Miguel Sampaio
José Pires Marques

Gabriel Martínez-Pinedo
Andreas Flörs
Gerrit Leck
Luke Shingles 

24

collaboration

SPARKLE Project:  2023.14470.PEX
PhD research grant:  2022.10009.BDAcknowledgements:



s, i & r Element Nucleosynthesis (sirEN) Conference Ricardo F. Silva

Thank you for your 
attention!
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Optimization procedure

Example optimization for 1 parameter (4f)
(5d, 6s, 6p) fixed at (0.357,0.0714,0.0714)

1. Get a set of initial points
2. Fit  a surrogate model for a specific loss 

function 
3. Compute acquisition function  - 

dynamically chosen between EI, PI and 
GP-UCB

4. Evaluate new point
5. Repeat 2. - 4. until convergence of loss 

function evaluation (exploitation) or 
chosen number of iterations 
(exploration)

6. Make recommendation

Sequential Model-Based Optimization 
(SMBO)

26
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Optimization procedure

Example optimization for 1 parameter (4f)
(5d, 6s, 6p) fixed at (0.357,0.0714,0.0714)

1. Get a set of initial points
2. Fit  a surrogate model for a specific loss 

function 
3. Compute acquisition function  - 

dynamically chosen between EI, PI and 
GP-UCB

4. Evaluate new point
5. Repeat 2. - 4. until convergence of loss 

function evaluation (exploitation) or 
chosen number of iterations 
(exploration)

6. Make recommendation

Sequential Model-Based Optimization 
(SMBO)

27

Method described in RFS+ 25 
(10.48550/ARXIV.2502.13250)
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Sensitivity of the Optimization

● Only very small changes to FMC after including more than 50% of the available data for Ce II  
- maintaining a relative accuracy of ~8%

● Close to ground state levels have the most impact (~10-30 levels)
● Provides confidence on it’s predictive value for non-measured levels and robust to low 

amounts of data
28

(4f1.43 5d1.05 6s0.24 6p0.28)

(4f2.03 5d0.97 6s0 6p0)

[R. F. Silva, in prep.]
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Optimization in AUTOSTRUCTURE
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● Faster and better 
memory handling than 
FAC 

● Not fully relativistic 

● “AS default” uses one of 
multiple built in ways to 
optimized the potential - 
possible better result if 
tweaked

● No extra input needed 
in “AS opt” - 
optimization in this work 

P=0

P=1
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Assessment of atomic data - Energy Levels 
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● Systematic discrepancy 
in                   configuration

● Consequence of local 
potential model(?)

Sm II

● Calibration to experimental data helps but is not sufficient
→ Lack of experimental data 
→ Possibly inaccurate wavefunctions
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Completeness/Accuracy Duality

● Necessary to ensure convergence ● Differences in atomic data can have 
significant effect in opacity 

31
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Optimization in AUTOSTRUCTURE
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● Faster and better 
memory handling than 
FAC - allows for larger 
computations, essential 
for CIE, PI and DR 
(active development by 
Prof. Nigel Badnel)

● Not fully relativistic 

● “AS default” uses one of 
multiple built in ways to 
optimized the potential - 
possible better result if 
tweaked

● No extra input needed 
in “AS opt” - optimization 
in this work 
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Roadmap to opacity

33
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Transitions to the ground state of Nd II  

Assessment of atomic data - Transition rates


