Unveiling the Mystery of Technetium-Rich M Stars: Implications for AGB Evolution

Shreeya Shetye

In collaboration with: Sophie Van Eck, Alain Jorissen, Ana Escorza, Lionel Siess, Stephane Goriely, Hans Van Winckel, Stefan Uttenthaler

- Late-type giants with distinctive molecular bands:
 - M stars : TiO
 - S stars : TiO + ZrO
- M stars : C/O ~ 0.5
 - S stars : $0.5 \leq C/O < 1$

- Late-type giants with distinctive molecular bands:
 - M stars : TiO
 - S stars : TiO + ZrO
- M stars : C/O ~ 0.5
 S stars : 0.5 ≤ C/O < 1

S stars can be classified based on the presence of Technetium (Tc): Intrinsic S stars : TP - AGBs Extrinsic S stars : Polluted binaries

- Late-type giants with distinctive molecular bands: M stars : TiO
 - S stars : TiO + ZrO
- M stars : $C/O \sim 0.5$ S stars : $0.5 \le C/O < 1$

S stars can be classified based on the presence of Technetium (Tc): Intrinsic S stars : TP - AGBs Extrinsic S stars : Polluted binaries

Laying the puzzle and some open questions:

→ What are the key characteristics (like temperature, mass, and luminosity) of Tc-rich M stars?

→ What is the evolutionary status of the Tc-rich M stars ?

→ How is the s-process abundance profile of these M stars ? Are they different from the ones of S-type or Carbon stars?

Besides technetium (Tc), do these stars have unusually high levels of any other elements?

Spectroscopic study of a 'large-sample' Tc-rich M stars

Total no. of stars: 57

V-band: 4-11 mag

Gaia G-band: 3-10 mag

Hermes S/N: 40-50 in V-band

HERMES, Mercator telescope (La Palma)

<u>Goal</u>: Identify Tc-rich M stars \rightarrow perform a spectroscopic and evolutionary study

Technetium signatures of sample stars

TiO-ZrO band strength indices

TiO-ZrO band strength indices

Tc-rich M stars in the HR diagram

 Tc-rich M stars lie beyond the predicted onset of third dredge-up.

Stellar tracks remain largely unaffected by high oxygen.

1 Msun Intrinsic S stars 1.5 Msun Extrinsic S stars 2 Msun Tc-rich M stars 3 Msun [Fe/H] = -0.50, [O/Fe] = 0.0 [Fe/H] = -0.50, [O/Fe] = 0.44.2 4.0 3.8 ^o 3.6 3.4 3.4 3.6 3.2 3.0 田 更 --- predicted onset of TDU 2.8 3.6 3.5 3.6 3.5 $\log T_{\rm eff}$ $\log T_{\rm eff}$

STAREVOL AGB evolutionary tracks: Siess et al. 2000

Tc-rich M stars in the HR diagram

- Tc-rich M stars lie beyond the predicted onset of third dredge-up.

 Stellar tracks remain largely unaffected by high oxygen.

 Tc-rich M and S stars have similar luminosities.

 $M \rightarrow MS \rightarrow S \rightarrow SC \rightarrow C?$

STAREVOL AGB evolutionary tracks: Siess et al. 2000

Predicting Tc-rich M stars with nucleosynthesis models

 Metallicity effect > Mass effect on when the star becomes Zr-enriched.

AGB nucleosynthesis models: Siess et al. 2000, Goriely & Siess 2018

Predicting Tc-rich M stars with nucleosynthesis models

 Metallicity effect > Mass effect on when the star becomes Zr-enriched.

 M stars can exhibit clear Tc absorption features without significantly strong ZrO bands.

AGB nucleosynthesis models: Siess et al. 2000, Goriely & Siess 2018

Our findings about the Tc-rich M stars: (Shetye et al. 2025 under review in A&A)

- Comparison of spectral features of S and M stars:
 - Technetium features of M stars are not different than S stars.
 - Tc-rich M stars follow a distinct sequence in the BTiO- BZrO plane.

Our findings about the Tc-rich M stars: (Shetye et al. 2025 under review in A&A)

- Comparison of spectral features of S and M stars:
 - Technetium features of M stars are not different than S stars.
 - Tc-rich M stars follow a distinct sequence in the BTiO- BZrO plane.
- From an evolutionary (HRD) point-of-view:
 - Tc-rich M stars lie beyond the predicted onset of TDU.
 - Tc-rich M and S stars have similar luminosities.

Our findings about the Tc-rich M stars: (Shetye et al. 2025 under review in A&A)

- Comparison of spectral features of S and M stars:
 - Technetium features of M stars are not different than S stars.
 - Tc-rich M stars follow a distinct sequence in the BTiO- BZrO plane.
- From an evolutionary (HRD) point-of-view:
 - Tc-rich M stars lie beyond the predicted onset of TDU.
 - Tc-rich M and S stars have similar luminosities.
- Nucleosynthesis predictions suggest that some M stars can exhibit clear Tc absorption features without significantly strong ZrO bands.
- Spatial and kinematic properties: Tc-rich M stars may also be older than Tc-rich S stars

Thermal pulses + Third dredge-up \rightarrow AGB s-process production

Thermal pulses + Third dredge-up \rightarrow AGB s-process production

Testing the waters with a pilot study: the case of S Her

5

Backup slides

Abundance analysis of 3 Tc-rich M stars

 Table 1. Stellar parameters and metallicity of some sample stars.

Star	T _{eff}	L	log g	[Fe/H]		C/0
	(K)	(L_{\odot})		(dex)	(dex)	
AA Cam				-0.3 (13)	0.13	0.5
		4200_{-100}^{+200}		-0.6 (8)	0.32	0.3
RX Lac	3500	6600^{+700}_{-600}	0.0	-0.9 (7)	0.16	0.4

Spatial properties

 Tc-rich and Tc-poor M stars belong to the same population

! Tc-poor M star ≠ Tc-poor S star

(Extrinsic S star)

Spatial and kinematic properties of Intrinsic S, Extrinsic S and N-type Carbon stars : Abia et al. 2022

Kinematic properties

- Tc-rich M stars may have masses as low as 1.5–1.0 M^o
- They appear older than S and C stars → possible shift in metallicity distribution?

v have masses ∕I⊙		Tc-poor M	Tc-rich M	
	О и (km/s)	38.8 ± 0.5	46.3 ± 0.7	
than S and C	σ_{v} 19.7 ± 0.2		29.4 ± 1.3	
hift in tion?	О w (km/s)	18.6 ± 0.4	12.3 ± 0.3	
Besançon Galactic	Age	5 - 7 Gyr	7 - 10 Gyr	
Model	Mass	1.3 - 1.15 M☉	1.15 - 1 M☉	

Spatial and kinematic properties of Intrinsic S, Extrinsic S and N-type Carbon stars : Abia et al. 2022 Besançon Galactic Model (Robin 2021)

Kinematic properties

			Tc-poor M	Tc-rich M
		O u (km/s)	38.8 ± 0.5	46.3 ± 0.7
	-	Ο ν (km/s)	19.7 ± 0.2	29.4 ± 1.3
	-	О w (km/s)	18.6 ± 0.4	12.3 ± 0.3
Bes	sançon Galactic	Age	5 - 7 Gyr	7 - 10 Gyr
	Model	Mass	1.3 - 1.15 M☉	1.15 - 1 M☉

Spatial and kinematic properties of Intrinsic S, Extrinsic S and N-type Carbon stars : Abia et al. 2022 Besançon Galactic Model (Robin 2021)

Spatial properties

Kinematic properties

	Tc-poor M	Tc-rich M
О и (km/s)	38.8 ± 0.5	46.3 ± 0.7
σ ν (km/s)	19.7 ± 0.2	29.4 ± 1.3
O w (km/s)	18.6 ± 0.4	12.3 ± 0.3
Age	5 - 7 Gyr	7 - 10 Gyr
Mass	1.3 - 1.15 M☉	1.15 - 1 M☉

Tc-rich M stars - have potentially masses as low as 1.5 - 1 $M\odot$ - are oldest when compared to S and C stars