Nuclear Beta-Decay of Highly-Ionized Heavy Atoms in Stellar Interior PART II

Kohji Takahashi @Giulianova/13.07.2025

GSI Helmholzzentrum für Schwerionenforschung GmbH, 64291 Dramstadt, Germany¹

Schwalbenweg 23, 69181 Leimen, Germany²

- ¹ E-mail: <u>k.takahashi@gsi.de</u> (Exchange Fellow)
- ² Postal address

1. THE AIM

As in PART I

(KT & Yokoi 1981~1987)

+ M.Arnould ULB 1983~ for astrophyical applications

Theoretical Predictions of the Transition Rates of

Nuclear ß-Decays in the S-Process Environments

Nuclear **ß-decays** modes

Figure 12. Various nuclear β -decay modes: (a) β^- decay. (b) β^+ decay. (c) orbital-e⁻ capture: (d) continuum-e⁻ capture. (e) continuum-e⁺ capture. and (f) bound-state β decay. The processe-(a)-(c) are the usual decay modes in the laboratory, while (d)-(f) can occur under stellar conditions

2. Why Now?

Personally: --- in memory of

Franz Kappeler (1942-2021) & Michael J. Pearson (1933-2024)

Computational limitations encountered in PART I

= not only in CPU time, but also the infrastructures and budgets!

→ solved in the advent of high-performance PCs

(in buttering-up mode)

*** Theoretically:** Advanced s-process models

- Low-Mass Stars (~ 2002: FRANEC)
- Intermediate-Mass Stars (post-I.Iben, @ULB)
- Massive Stars (2001~ 2009: @ Clemson)
- * Experimentally:
 - Bound-State Beta-Decays @ GSI storage-ring
 - Pandora Project @ lns.infs ECRIS

Comments on Bound-State-Beta-Decays Measured @ GSI

Terrestrial !

- ¹⁶³Dy⁺⁶³ (1992) (- stable if neutral) → ¹⁶³Ho⁺⁶³ t¹/₂ = 47 ± 5 d vs. 50 d (KT+ 1988) cf. **R. A. Ward**(¹⁶⁴Er \Leftrightarrow problem)
- ¹⁸⁷Re⁺⁷⁵ (1996) (-long-lived (50*10⁹ yr) if neutral) \rightarrow ¹⁸⁷Os⁺⁷⁵ t¹/₂ = 33 ± 2 yr vs. 42 yr cf. + Arnould (r-process Chronometry)
- → f t –value : lepton phase volume (theoretical) x the measured half-life = (Nuclear Matrix Elements)⁻¹

ft (terrestrial)
$$\rightarrow f_{\pm} \Leftrightarrow t$$
 (stellar)

205Tl⁺⁸¹ → ²⁰⁵Pb⁺⁸¹ (G.Leckenby++Y.Litvinov++ 2024)
→ Detector for Solar-Neutrino Problem (Freedman,1986)
→ S-Chronometry in the Early Solar System (+ Arnould 1985)

log-ft-values: Measured: 5.9 PART I: 5.4 Ogawa & Arita (nuclear shell model, 1988) 5.3 valence nucleons 6.0 + the core polarisation – perfect! → needs some improvements e.g. * compare s-process models/codes

* consider chemical evolution (e. g. Schramm-Wasserburg 1970)

Comments on PANDORA Project @ Ins.infs ECRIS

As I understand:

valuable to calibrate temperature-dependence of predicted ß⁻ decay rates in the 0.01 keV ~ 100 keV range

- if no appreciable density-dependence (i.e high Q-value)
- must involve <mark>γ- rays</mark> one way or another

Please **Shout** if I am wrong!!

3. EMPHASIS

A: Extensions to

- * Higher Temperatures (T8 > 5) : at least increases nuclear-physics uncertainties
- **Lower Densities** (ρYe < 166 g/cm³):
 at least increases atomic-physics uncertainties

B: Evaluating Atomic-Physics Uncertainties

by relying on: Relativistic Self-Consistent Mean Field Method (Hartree-Fock-Dirac Liberman et al., 1971)

EXAMPLES that follow:

(1) Ionization Potentials
 (2) Positrons?
 (3) Saha (LTE) Ionization Equation

(1) Ionisation Potentials

Goodness of I.P. of PART I

Hartree-Fock-Dirac I.P.

(2) **Positrons** (in **High-Temperature, Low-Density** Regime)

Positron/Electron Number Density Ratio

(3) SAHA Equilibrium Equation (Os ions)

case 1: T8 = 3 ρ = 1000 (g/cm³) Ye = 0.5 case 2: T8 = 2 ρ = 1000 (g/cm³) Ye = 0.5 case 3: T8 = 0.1 ρ = 1 (g/cm³) Ye = 0.875 **PART I PART II**

SAHA Equilibrium Abundances

SAHA Equilibrium Abundances

THE CATCH is....

STAY TUNED!

p.s. At least a few contributions to this conference have partially dealt with the problems discussed here, including those by **B. Mishra** and by **S. Taioli.** Also see the complihensive review by **G. Martinez-Pinedo**

