s, i & r Element Nucleosynthesis (sirEN) Giulianova June 9–14 2025

Effects of multiple spiral arm patterns on O, Eu, Fe, and Ba abundance gradients

(In collaboration with G. Cescutti and I. Minchev)

jan initian and and

معالمه منهم ومن في في في المعالم

Chemical abundance azimuthal variations

Milky Way

0

Δ

OCs (age < 0.5 Gyr) OCs (age $\geq 0.5 \text{ Gyr}$)

Hackshaw+24

A 2D Galactic disk chemical evolution (spitoni+19,23; Vasini,ES +25)

A 2D Galactic disk chemical evolution (spitoni+19,23; Vasini,ES +25)

Shells 1 kpc-wide

36 segments of 10° width.

Spiral arms prescriptions

Spitoni+19

ISM density fluctuations from an analytical spiral arms model with a single pattern

$\Sigma_S(R,\phi,t) = \chi(R,t_G)M(\gamma)$

Spiral arms prescriptions

Spitoni+19

ISM density fluctuations from an analytical spiral arms model with a single pattern

$$\Sigma_S(R,\phi,t) = \chi(R,t_G)M(\gamma)$$

AMPLITUDE OF THE SPIRAL DENSITY

R

Spiral arms prescriptions

ISM density fluctuations from an analytical spiral arms model with a single pattern

 $\Sigma_S(R,\phi,t) = \chi(R,t_G)M(\gamma)$

AMPLITUDE OF THE SPIRAL DENSITY

R

 $X(R,t_G)$

MODULATION FUNCTION

$$\begin{split} M(\gamma) &= \left(\frac{8}{3\pi}\cos(\gamma) + \frac{1}{2}\cos(2\gamma) + \frac{8}{15\pi}\cos(3\gamma)\right),\\ \gamma(R,\phi,t) &= m \left[\phi + \Omega_s t - \phi_p(R_0) - \frac{\ln(R/R_0)}{\tan(\alpha)}\right]. \end{split}$$

Spitoni+19

M multiplicity (e.g. the number of spiral arms)

 Ω_{s} angular velocity of the spiral pattern

Disc angular velocity by Roca-Fàbrega et al. (2014)

Spitoni+19

CR

Spiral structure with multiplicity m = 2 with a single pattern

Modelings side: why multiple spiral modes?

Presence of multiple spiral modes moving at different pattern speeds in galactic discs including our own Milky Way (Minchev & Quillen 2006 Quillen et al. 2011)

Disc angular velocity by Roca-Fàbrega et al. (2014)

Spitoni+23

Spiral structure with multiplicity m = 2 composed by three chunks moving at different pattern speeds

For a m=2 spiral arms structure

 $M(\gamma) = \sum_{j=1}^{N} M_{MS,j}(\gamma_j)$ *j*=1

The present-day star formation rate

Present day residual azimuthal variations

Larger azimuthal Variation at the co-rotations (In agreement with Spitoni+19)

Present day residual azimuthal variations

Larger azimuthal Variation at the co-rotations (In agreement with Spitoni+19)

... Results in agreement with the chemical evolution model in which we consider the density fluctuation by the chemodynamical model by Minchev+13

NGC 6754

Temporal evolution of the oxygen gradient

As the oxygen abundance increases (i.e. closer to the "satura- tion" level of the chemical enrichment), the chemical variations due to perturbations of the SFR become smaller.

Temporal evolution of the oxygen gradient

As the oxygen abundance increases (i.e. closer to the "satura- tion" level of the chemical enrichment), the chemical variations due to perturbations of the SFR become smaller.

Temporal evolution of the oxygen gradient

As the oxygen abundance increases (i.e. closer to the "satura- tion" level of the chemical enrichment), the chemical variations due to perturbations of the SFR become smaller.

What about other -s and -r process elements?

Ba Eu

Modified yields of Cristallo et al. (2009, 2011) for nucleosynthesis by the s-process in low-mass AGB stars +rotating massive stars (Frischknecht+16)

NSM fixed time delay of 1 Myr for the coalescence (the scenario is also compatible with other sources of r-process material such as MRD SNe) (see Cescutti +15, Rizzuti+19)

Present day residual azimuthal variations

Oxygen Europium

Iron

Barium

Present day residual azimuthal variations

Europium

Oxygen

Iron

Barium

Larger azimuthal variations for elements produced on shorter time-scales

Spiral arms with different pattern speeds Ω_{s} and modes m

 Ω_{s} and m extracted from Hilmi+20 high- resolution hydrodynamical simulations of MW-sized galaxies from the NIHAO-UHD project of Buck et al. (2020)

Spiral arms with different pattern speeds Ω_{s} and modes m

The new ISM density fluctuation is...

 $\Sigma_{MS}(R,\phi,t) = \chi(R,t_G) \sum_{m=1}^{4} \left(A_m \sum_{i=1}^{N_m} M_{MS_m,j}(\gamma_j) \right)$

Spiral arms with different pattern speeds Ω_{s} and modes m

The new ISM density fluctuation is...

 $\Sigma_{MS}(R,\phi,t) = \chi(R,t_G) \sum_{m=1}^{4} \left(A_m \sum_{i=1}^{N_m} M_{MS_m,j}(\gamma_j) \right)$

 $A_1 + A_2 + A_3 + A_4 = 1$

Spiral arms with different pattern speeds Ω_s and modes m extracted from Hilmi+20

Presence of additional wiggles in the azimuthal variations compared to the results Material spiral arms, propagating near the co-rotation at all galactic radii, have been described by a number of recent numerical work with different interpretations (see Grand et al. 2012; Comparetta & Quillen 2012; Hunt et al. 2019).

Disc angular velocity by Roca-Fàbrega et al. (2014)

Material spiral arms, propagating near the co-rotation at all galactic radii, have been described by a number of recent numerical work with different interpretations (see Grand et al. 2012; Comparetta & Quillen 2012; Hunt et al. 2019).

Disc angular velocity by Roca-Fàbrega et al. (2014)

EVOLUTION AT MORE RECENT TIMES

REFERENCE MODEL

Extending the co-rotation to all Galactocentric distances

Last

Extending the co-rotation to all Galactocentric distances

Extending the co-rotation to all Galactocentric distances

Comparison with Poggio+ES 22 (Gaia DR3)

Comparison with Poggio+ES 22 (Gaia DR3)

Residual azimuthal variations

Percentile 10%

Comparison with Poggio+ES 22 (Gaia DR3)

Percentile 90%

Viscasillas, Magrini, ES+25

Agreement between the inner spiral arms traced chemical abundance patterns in Gaia ESO and our model predictions.

Conclusions

- Elements synthesised on short time scales (i.e., oxygen and europium in this study) exhibit larger abundance fluctuations.
- Predicted azimuthal variations are consistent with metallicity variations found by Gaia DR3 (Poggio+ES22), Gaia-ES0 (Viscasillas, Magrini, ES+25), if co-rotation is extended to all radii at recent evolutionary times.

Vasini, ES +25

Spiral arms analytical prescriptions

Spitoni+19

Analytical spiral structure by Cox & Gomez (2002).

 $\Sigma_S(R,\phi,t) = \chi(R,t_G)M(\gamma)$

• Coeval evolution between the amplitude of the spiral density perturbation $\chi(R, t)$ and the total surface density $\Sigma_D(R, t)$ computed at the same Galactic distance R.

MODULATION FUNCTION

$$\begin{split} M(\gamma) &= \left(\frac{8}{3\pi}\cos(\gamma) + \frac{1}{2}\cos(2\gamma) + \frac{8}{15\pi}\cos(3\gamma)\right),\\ \gamma(R,\phi,t) &= m\left[\phi + \Omega_{\rm s}t - \phi_p(R_0) - \frac{\ln(R/R_0)}{\tan(\alpha)}\right]. \end{split}$$

$$\frac{d}{dt} \left[\chi(R,t) / \Sigma_D(R,t) \right] = 0,$$

Spiral arms analytical prescriptions

Spitoni+19

$$\delta_{\rm S}(R,\phi,t) = \frac{\Sigma_{\rm S}(R,\phi,t) + \Sigma_{\rm D}(R,t)}{\Sigma_{\rm D}(R,t)} = 1 + \frac{\Sigma_{\rm S}(R,\phi,t)}{\Sigma_{\rm D}(R,t)}$$

$$\delta_{\rm S}(R,\phi,t) = 1 + M(\gamma) \frac{\chi(R,t_G)}{\Sigma_{\rm D}(R,t_G)}$$

COEVAL EVOLUTION CONDITION

$S = v \Sigma_g(R, t)^k \delta_S(R, \phi, t)^k$