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With immense pleasure we announce the International  "s, i & r Element Nucleosynthesis (sirEN)"
Conference on the Nucleosynthesis of Heavy Elements.

This Conference is organised in the memory of Prof. Roberto Gallino, who recently passed away. We are
honored to have worked with him and grateful for his genuine intelligence and friendship. 

It is imperative to recognize the profound significance of our collective endeavor in unraveling the
intricate mysteries of cosmic production of chemical elements.
Nucleosynthesis stands as one of the most fashinating phenomena in Astrophysics. At the heart of this
field lies the synthesis of heavy elements, a process governed by the interplay of the slow, intermediate,
and rapid neutron capture processes.

From the quiescent burning phases of massive stars and the final evolutionary stages of low- and
intermediate-mass stars, to the violent explosions of supernovae and the mergers of compact binary
objects, the cosmos orchestrates a symphony of nuclear fusion and fission that shapes the complex
pattern of elements constituting the Universe baryonic matter. 

A synergic approach, integrating experiments, observations, and theoretical frameworks, is pivotal for
understanding the complex mechanisms underlying the nucleosynthesis of heavy elements. Aim of the
"sirEN Conference" is to trigger a collaborative effort to comprehensively unravel their formation
processes, fostering a collective understanding of the three fundamental neutron capture mechanisms
at work (s, i & r).

The Conference will be organized in Giulianova (TE), a city nestled along the picturesque Adriatic coast,
in the marvellous land of Abruzzo. Steeped in rich cultural heritage and bathed in the golden hues of
Mediterranean sunshine, this charming city captivates visitors with its timeless beauty and vibrant
ambiance.

The maximum number of participants to the conference is set to 140 for organizational reasons.

Let the quest for cosmic alchemy begin!Let the quest for cosmic alchemy begin!Let the quest for cosmic alchemy begin!Let the quest for cosmic alchemy begin!
Late Registration fee (450€) can be only paid via bank transfer to:
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Banca Intesa San Paolo

Agenzia: Piazza Paolo Ferrari 10, Milano (20121)

IBAN: IT49I0306909606100000407726

BIC/SWIFT: BCITITMMXXX

In the payment reference, include the following wording:

"NAME SURNAME - sirEN Late Registration Fee"

N.B.: Please note that we are not sending emails claiming for any payment. Ignore these scam emails. 
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ANNALS OF PHYSICS: 12: 331408 (1961) 

Neutron Capture Chains in Heavy Element Synthesis* 

The Universe, too, loves to create 
whatsoever is destined to be made. 

-Marcus Aurelius, Meditations IX. 

D.D. CLSYTON, W. A. FOWLER, T.E.Huqt ~KD B.A. ZIMMERMAN 

Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California 

This paper is concerned with stellar neutron capture processes which occur 
at a rate slow compared to the intervening beta decays, the so-called s-process 
in t,he synthesis of the elements. An approximate method of high reliability 
has been devised to solve for the abundance distributions resulting from 
the exposure of seed nuclei, such as Fe 66, to a weak neutron flux in stars. The 
capture chain differential equations are solved by approximately matching the 
Laplace transforms of the exact solutions to the Laplace transform of an easily 
calculable function. From the sequence of abundance distributions generated 
in this manner for specified numbers of neutrons per initial seed nucleus, one 
can estimate the superpositions of neutron exposures required to reproduce 
the experimentally observed abundance distribution for the s-process isotopes 
of the elements. Not only can the validity of the s-process model of heavy 
element synthesis in stellar interiors be demonstrated in this way, but certain 
inferences about the “history” of stellar neutron processes also appear. Special 
attention is paid in this regard to the “terminal” exposures which have syn- 
thesized lead and bismuth at the end of the line in the s-process. An analysis is 
appended of neutron capture cross sections near 25 kev for the s-process 
nuclei, including interpolations based upon empirical cross sections guided 
where necessary by isotopic and elemental abundances. A complete correlation 
between neutron capture cross sections and s-process abundances cannot be 
made at the present stage of knowledge, but the methods described will lead 
to an eventual solution as more empirical information becomes available. 

I. INTRODUCTIOK 

Burbidge et al. (1)’ (hereafter designated as B’FH) showed that neutron 
capture processes have played the primary role in the synthesis in stars of the 

* Supported in part by the joint program of the Office of Naval Research and the U. S. 
Atomic Energy Commission. 

t Now at the University of British Columbia, Vancouver, British Columbia, Canada. 
1 We refer to the synthesis of the heavy elements in the so-called “universal” or “cosmic” 

abundance distribution of the elements. Greenstein (1) first suggested the C’s (ar,n) re- 
action in stars as a source of neutrons which, on capture, could lead to anomalous abun- 

331 
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the s-process chain between these two terminal regions. Further complication is 
necessary because many of the nuclei of the a-process chain may be created in 
other processes, such as when only one stable isobar exists at atomic weight A. 
In these cases Na of eq. (5) applies only to the fraction of that abundance which 
is created in the s-process. 

The resulting situation can be described as follows; a group of nuclei, peaked 
in abundance at FeS6, is exposed to unknown numbers of neutrons, characterized 
by a range of value in the exposure parameter 7. An important building block of 
our analysis consists in the observation that the general problem may be reduced 
to superpositions of a much cleaner problem, that of one seed nucleus exposed 
to an integrated neutron flux characterized by a single value for 7. The solution 
in this case may be generalized to several seed nuclei by superimposing the 
single seed solutions weighted proportionally to the initial relative abundances 
of the seed nuclei. Further generalization can be made to nonuniform exposure 
conditions by superimposing solutions for different 7’s. The second type of super- 
position (that of different exposures) will in fact be more important, for the 
observed and calculated (equilibrium model) abundances seem to indicat,e 
clearly that the initial distribution consists primarily of A = 55, 56, and 57, 
with N66 N NS7 CY 0.1 NS6 . The long exposure distributions resultming from t,his 
seed group will not differ greatly from that produced by an exposure of Fe5” 
alone. Thus the simpler problem that we consider is, “What are the abundance 
distributions for different neutron exposures of Fe”?” 

We will at first neglect the fact that there is recycling due t,o alpha-decay at 
the end, and consider t’hat every time Bizog captures a neutron, no further cap- 
ture occurs and nuclei simply pile up at A = 210. Later we will return to t,he 
problem of the redistribution of these nuclei among the lead and bismuth iso- 
t#opes. Thus t,he equations to be solved are 

dNb6 -=- 
dr ‘Jb6 Nb6 , 

dN.4 -=- 
dr QA N, + uA-1 Na.w.1, 57 5 A 5 209, (6) 

dNzlo __ = 
dr u2og Nzog . 

The boundary conditions are 
N&o) A = 56 

Na(0) = 
0 A > 56 
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energy. Thus 

(UV) = UTVT 

with uT = a(/#) and VT = (~/CT/P)“‘. The reduced mass 
(2) 

where M, is the neutron mass. To this last approximation UT ‘v (2kT/M,)“2 is 
independent of A. As an indication of the error involved in using VTUT for (VU), 
one can show that if u - v” or v-‘, then (vu) = (z/l/?r)vTuT , which is only 13 
per cent greater than VTUT . Our choice for kT will be mentioned later. For the 
moment we use the fact that VT can be factored out on the right side of (l), 
leaving 

dNa (t> ~ = - VT& (t)uA (kT)N, (t) + VT% (t)au(kT)Na-l(t) dt (3) 

Under these assumptions it is possible to define a new independent variable which 
will measure the progress of neutron captures uniquely. We define 

dr = n, VT dt, T = s ‘T&n (t)vT dt. (4) 

Equation (3) becomes 

dNa -= 
dr - (CA NA - UA-1 NA-1). 

This variable r is the integrated flux-time, a measure of the total accumulated 
neutron bombardment per unit area. It conveniently resolves variations of neu- 
tron densities and time scales into one convenient measuring variable. Through- 
out this paper we express u in millibarns; accordingly the unit for T is 10” neu- 
trons/cm2. 

It is important to keep in mind that Eq. (5) applies only to that part of the 
abundance at atomic weight A which takes part in the s-process. The light ele- 
ments are at present thought to be formed mainly by charged particle reactions. 
The elements in the abundance peak at the iron group are thought to be formed 
in the equilibrium process as discussed by B2FH. It is for the production of ele- 
ments of atomic weight greater than sixty that the process of neutron capture 
must be invoked. The large abundances of the iron group nuclei are therefore 
envisioned as a starting point for the capture of neutrons produced in light ele- 
ment. reactions. Neutron capture may then proceed in an unbroken chain of 
increasing atomic weight unil Bi20g captures a neutron, whereupon alpha decay 
to the lead isotopes takes place. Equation (5) may thus be thought to apply to 
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IV. THE SEARCH FOR A SOLUTION 

Bateman (9) who served many years on the faculty of this Institute, found 
long ago that exact solutions to this problem can be easily written down. If 
one changes the numbering index to k = A - 55, so that the index for the seed 
nucleus is lc = 1 and the process begins with N1(0) nuclei having lc = 1, then 

By substituting back into the equations, it follows that 

Cki = (uk _ ui)(uk_,2u~~;3.‘.‘.~(~-’ u;)(ul - ai) ’ omitting 

For example : 

Cl1 = 1, 

co1 = a’,& = A, 
a2 - Ql 

(7) 

(8) 

(9) 

C31 = (u3 _ uI;;;2 - ul) ’ etc* 

There are two severe difficulties with this exact solution: (1) The functional 
form is incorrect as it stands when any u,,, = u,, , n # m, in which case a limiting 
process as urn -+ un must be performed. In fact, many of the cross sections are 
equal within experimental error. (2) Even if all the cross sections were arbi- 
trarily made to differ slightly, the numerical evaluation of this solution is pro- 
hibitive from the consideration of time required, and not easily corrected for 
changes in cross section estimates or measurements. 

Before discarding this method, we would point out for later use that there is 
one interesting case for which the series is easily summable; Uk = ylc, y = con- 
stant. Then 

cki = (ii - l)!WY 
(k - i)!(i - l)!’ and 

N, c7) = jvl (o)(k - 1) !  gl (k(Ili)iiii “I”;,! = If1 (0) e-“(1 - e-yr)k-l+ 
(10) 

This exact solution will be used later as a quantitative check on an approxi- 
mate solution to be presented. 

To obtain a qualitative feeling for the nature of the solution, Fowler et al. 
(IO) examined the solutions for constant cross section, which are easily seen 
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same and equal to X (reserving u for actual cross sections) for whieh 

(23) 

where Nm* is the abundance for constant cross section and m is a new numbering 
index analogous to k. An effort will be made to approximate the Laplace trans- 
form of the exact solution of Eq. (22) by the Laplace transform of Eq. (23). 
Our task is then to choose, for each k, values of mk and xk in Eq. (23) such that 

m!s “best” approximates 

(24) 

where 

(25) 

When this choice has been made, we shall write 

UkNk(T) L-~ 
#k(T) = N1(0) Cd 

1 
mk 

= xk bkdmk-’ e--xki 

r (mk) (26) 

Two apparent advantages of this method of investigation immediately appear: 
a. A glance at Eq. (22) shows that $k( s) , and hence $k( 7)) depend only on 

the magnitudes ul , u2 , . . . , Uk , and not upon the order in which they occur. 
Consequently mk and & will be chosen for each k independent of the ordering 
of the cross sections up to and including Uk . Moreover, it will be seen later that 
an important justification of the approximation procedure depends crucially on 
this fact. 

b. The Laplace transforms are valid for any ul , u2 , . . , including those 
special cases in which some are equal. 

The theory of functions reveals the well known fact that the behavior of a 
function for very small 7 and the behavior for very large values of 7 correspond, 
respectively, to the behavior of its Laplace transform for very large and very 
small values of s. An attempt at a best approximation is therefore dependent 
upon the range of interest of 7. For the s-process interest lies principally in 
moderate to large values of 7. Thus, it is expected that the best approximation 
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should be chosen to make the Laplace transforms equal for small values of s. 
The error in calculating tik( 7) is 

1 
s 

ice 
=- 

27ri --ice 

where 

87 e 

The major contribution to the error Ek comes from the integrand near s = 0. 
It is then desirable to have the coefficients of the smaller powers of s in the 
numerator vanish. Our approximation is the “best” in the sense that we choose 
mk and xk such that the first two coefficients Bkl and BM vanish. This means 

(29) 

In the last expression we drop the subscript i and the average is to be taken 
over all nuclei up to k. We also have 

SOhing these two equations for mk and xk yields 

(29’) 

(30) 



σk = k
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~~IIII IIIIII IIIIII 1 I 1 
0.5 COMPARISON FOR 9 = k 

T  =2 (oppmximote) 

T  = 3 (oppmximote) 

I ‘7 33 49 65 8’ 97 1’3 ‘29 ‘45 ‘61 

k 
FIG. 8. Comparison of exact and approximate solutions for (ok = k. The dashed curves 

show the exact solution for certain7, whereas the solid curves show the approximate solution 
for the same value of T. The approximate solutions adhere well to the correct physical 
properties of the exact solutions, but the value of the maximum appears to be underesti- 
mated by about 10 per cent. 

One might rightly question the validity of this test for a more perplexing 
case in which one or two small cross sections occur in the neighborhood of large 
ones, as is the actual case for nuclei with closed neutron shells. This doubt may 
be partially dispelled by the following imaginary problem. Suppose 

bl ) u2 , g3 . . . 0101 = [l, 4, 2, 6, 7, 8, 9, 5, 3, lo]. 

We have seen that the exact solution for $Q( T) is independent of the ordering 
of the cross sections urnsk . Thus the solution for ti9 with u9 = 3 is exactly the 
same as in the case of Uk = lc (the abundances Nk = J/k/al, will of course be dif- 
ferent). For ti5 with u5 = 7, solutions will be approximately that for Uk = x k 

and so on. Extensions of this observation can be quit’e general. In solving the 
s-chain, one can, for each value of k, renumber all the cross sections up to and 
including the i&h one, and find rough linearity in many cases. This fact assures 
that the error in the calculation of #k is of the same order as the error for the 
exactly linear case. 

Further confidence may be gained by noting that superpositions of various 
exposures tend to decrease the relative error in +k rather than t’o change t,he 
error in an arbitrary or statistical manner. If p(7) represents the number of 
seed nuclei exposed to a flux T in the interval dr, then after t’he superposition 

s (0 
ukN, = P(T)&(T) dr. 

0 
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The distribution of Fig. 13 for 7 = 2.7, n, = 153, shows at most a ten per 
cent deviation from the equilibrium distribution. For this reason we arbitrarily 
take n, = 153 to mark the approximate onset of equilibrium. The remaining 
variations from equilibrium will have decreased by a factor l/e by 

7 = 3.1(A7 = 0.4). 

Since dn, = dTzd ti A , and since cii”G #‘A ‘v 2 at equilibrium, an exposure of 
AT = 0.4 requires only 0.8 additional neutron captures. The cross sections drop 
so markedly at Pbzo6 that all of the nuclei are swept into the range 206 $ A S 209 
by almost the minimum number of neutron captures possible. Beyond nC = 155 
practically no change in the heavy element distribution occurs and additional 
neutrons are only converted into helium nuclei. 

Figures 14 and 15 show a selected few of the calculated distributions as a func- 
tion of A with nc as a curve parameter. Figure 16 shows n, , An,/AT, and %/T as 

functions of r. Note that n, increases very slowly for T  > 3 because 
209 

for the equilibrium configuration among the lead and bismuth nuclei. 

7 

FIG. 14. The distribution in $A = UA~ZA for various uniform exposures. Each curve is 
labeled by n, , the average number of neutron captures per initial iron seed required to 
generate the distribution. 
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FIG. 19. A superposition of exposures to approximately fit the observed UN data curve 
The format is identical to Fig. 1, but the curve is a calculated one, 

(TANA = 2160 $(n, = 2.8) + 990 $( nc = 6.9) + 45 +(nc = 34) + 45 +(nc = 100) 
See Eqs. (58) and (59) in the text. 

limited neutron supply resulting in a total exposure characterized by r - 0.1 
or n, - 3. It has already been noted that over the range 90 < A < 200, the 
UN curve remains relatively constant. Discussion of the behavior of the curve 
beyond A - 200 will be postponed until later sections. 

One of the many ways in which UN for 62 < A < 200 could be approximately 
synthesized is shown in Fig. 19 where we have plotted 

UN = 21w(7 = 0.1) + 99w( .r = 0.2) + 45#( 7- = 0.6) 

+ 45$b(T = 1.1) 

= 216O$(n, = 2.8) + 99O#(nc = 6.9) + 45#(n, = 34) 
(58) 

+ 45l/qno 7 100). 

In these equations the numbers on the right-hand side represent the number of 
iron group nuclei exposed to the indicated values of r or nC . These numbers 
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dY
dt

= AY

Time evolution of a linear, directed network

Aij = {
λji, i ≠ j,1 ≤ i, j ≤ n

−Λi = − ∑n
k=1,k≠i λik, i = j,1 ≤ i ≤ n

Y(t) = MY(0)

M = ℒ−1 ((s − A)−1)
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G(𝒫)( j, t; i,0) = F(𝒫) (Λt)N(𝒫)−1
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Analytic solution for contribution of species i to species j over 
time t in a directed, linear network (Ghosh and Meyer 2025)
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to two orders of magnitude, for example, in the case of
151Eu(n, γ)152Eu. Such a large underprediction of the reaction
rate introduces artificial bottlenecks on the neutron capture
path. Because of this, we use the previous version of the refitted
rates (JINA Reaclib label ka02). Twenty-eight α-decay rates
(Tuli 2011), which are important for the s process and its
termination because of being close to the valley of stability,
were selected and added to the network. These decay rates are
listed in the Appendix Table 3.

The physical input conditions are adapted from the density and
temperature profiles of the intershell region that Stancliffe et al.
(2011) found for a low-metallicity AGB star. In particular, we
present here the test case with T=1.5×108 K and ρ=
1600 g cm−3. Different temperatures and densities in the
range of 1.0×108 K�T�2.2×108 K and 800 g cm−3�
ρ�3200 g cm−3 were also tested without significant changes in
the results.

To model the nucleosynthesis in the intershell region, the
composition of the input zone is adapted from the intershell
composition of Abate et al. (2015b, and references therein). In
particular, we use the abundances of 320 isotopes from an
AGB star model with metallicity Z=10−4 and initial mass
M=1Me after the second thermal pulse.

At n=1015 cm−3 the evolution of the abundance distribu-
tion is then followed for t=0.1 years, which results in a
neutron exposure of τ=495 mb−1. The run times of the
models at lower neutron densities are scaled with n to ensure
the same neutron exposure. Such a large value ensures that
the resulting abundance pattern represents the equilibrium
abundance pattern between the heavy elements and the seed
nuclei. Once this equilibrium is reached, the element-to-
element ratio is a function of the constant neutron density and
is not altered by further neutron exposure at the same neutron
density. In other words, the abundance pattern is independent
of the actual neutron exposure, as long as equilibrium is
reached. We note that it is still uncertain what typical neutron
exposures are expected from PIEs in AGB stars and that
realistic values are, therefore, unknown. To match abundance
patterns of CEMP-s/r stars with i-process nucleosynthesis,
Dardelet et al. (2014) found neutron exposures that are about
an order of magnitude lower than we assume. However,
reducing the neutron exposure by one order of magnitude has
a negligible effect on the abundance patterns studied in this
work as the heavy elements are already close to equilibrium
with one another. For example, the relative abundance of
barium and europium [Ba/Eu] varies by less than 1% during
this period. The limitation of studying equilibrium abundance
patterns is that it is not possible to predict abundances at the
termination point of the neutron capture path at the lead peak.
While the element-to-element ratios of the other heavy
elements do not change with further neutron exposure, the
lead-peak elements are only produced and not destroyed by
neutron capture processes and can, therefore, not reach
equilibrium. This makes the lead abundance sensitive to the
final neutron exposure. Adding the total neutron exposure as a
degree of freedom should, therefore, be considered in future
work to further constrain the i process. Subsequent to the
exposure to the constant neutron density, the neutron flux is
turned off and the successive decays are followed for

t=10 Myr to allow the long-lived unstable isotopes to
decay.
Finally, while we keep the neutron density constant over the

whole time interval and switch the neutron source off
instantaneously, a more realistic profile would show the
neutron density decrease with time. We tested this behavior
by including a smoother decrease and found that the final
abundances are similar to those presented here only if the
decrease is relatively fast, with the timescale depending on the
neutron density. For n=1012 cm−3 the decrease can last for
about a year before any changes are seen in the final
abundances, while for n=1015 cm−3 the decrease has to be
extremely fast, in the order of a few hours, to keep the same
results as presented here. This effect needs to be further
investigated in the future.

3. RESULTS AND DISCUSSION

When exposed to free neutrons, the present seed nuclei, in
particular the abundant iron peak nuclei, repeatedly undergo
neutron capture reactions. Due to the β-decays of unstable,
neutron-rich isotopes, heavy elements are created. Figure 1
compares the neutron-capture paths in a section of the nuclide
chart for the two different neutron densities of n=107 cm−3

and n=1015 cm−3. A higher neutron density creates a neutron
capture path further away from the valley of stability, because
an unstable nucleus can form an even heavier isotope by

Figure 1. Neutron capture paths of the models with a constant neutron density
of n=107 cm−3 (upper panel) and n=1015 cm−3 (lower panel) shown in the
section of the nuclide chart including isotopes of the elements from tin to
gadolinium. Isotopes are located as a function of their neutron and proton
number and stable isotopes are highlighted by bold black borders. The magic
proton and neutron numbers are framed in red. The colors represent the mass
fraction of each isotope and, thereby, show where the neutron capture path
produces heavy elements. For n=107 cm−3 the paths runs mainly through the
stable isotopes and stay close to the valley of stability. For n=1015 cm−3 the
paths runs much further away on the neutron-rich side from the valley of
stability. Note the pile-up at 135I with magic neutron number 82 for
n=1015 cm−3.
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nn = 107 cm−3

nn = 1015 cm−3



nn = 1015 cm−3 T9 = 0.15



Total number of paths = 33 billion

L ≥ ΔA + ΔZ

56Fe →84 Sr

⇒ L ≥ 28 + 8 = 36

ΔN = ΔA

ΔZ







+---------- -- ------ -------- - -- -------------- +- ----- ------------ +- ---- ------------ +
|                  Reaction                  | Path Occurrences | Path  Percentage |

+---------- -- ------ -------- - -- -------------- +- ----- ------------ +- ---- ------------ +
|          n + fe56  -> fe57  + gamma         |      10000 |     100.00% |
|          n + fe57  -> fe58  + gamma         |      10000 |     100.00% |
|          n + fe58  -> fe59  + gamma         |      10000 |     100.00% |
|          n + fe59  -> fe60  + gamma         |      10000 |     100.00% |
|          n + fe60  -> fe61  + gamma         |      10000 |     100.00% |
|          n + ni64  -> ni65  + gamma         |      9974 |     99.74% |
|          n + se83  -> se84  + gamma         |      9973 |     99.73% |
|          n + ni65  -> ni66  + gamma         |      9253 |     92.53% |
|          n + ge77  -> ge78  + gamma         |      9187 |     91.87% |
|          n + ni66  -> ni67  + gamma         |      9012 |     90.12% |
|          n + se82  -> se83  + gamma         |      9002 |     90.02% |
|          n + ga74  -> ga75  + gamma         |      8415 |     84.15% |
|          n + ge78  -> ge79  + gamma         |      7883 |     78.83% |
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from its original position to the root arc (0 to species
(Z, N− 1)). Consequently, Dℓ(Z, N) is:
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From Equations (17) and (18), it is evident that ( )D Z N,ℓ and
Dℓ(Z, N) can be determined based on ( )D Z N, 1ℓ - and Dℓ(Z,
N− 1), along with the relevant reaction rates. This implies that
if the values of ( )D Z N,ℓ 0 and Dℓ(Z, N0) are known, where (Z,
N0) represents the leftmost isotope in a given isotopic chain, all
subsequent Dℓ and Dℓ within that chain can be computed. For
the initial isotope (Z, N0), where there are no incoming arcs
from the left, ( )D Z N,ℓ 0 is 1, and Dℓ(Z, N0) is equal to w(Z,
N0)—both of which are known quantities. Therefore, ( )D Z N,ℓ
and Dℓ(Z, N) can be calculated recursively.

We now consider the subnetwork with isotopes having
neutron number N or greater. Analogous to the treatment
above, we establish the designations ( )D Z N,u and Du(Z, N) as
shown in Figure 5, representing determinants from the
subdigraphs of isotopes with neutron number N or greater.
The subscript u denotes the upper contribution in this context.
Using the same technique of including or excluding an arc (in
this case, the λn(Z, N)Δt arc), we can get the recursive
expression for ( )D Z N,u and Du(Z, N), which are
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Again, Equations (19) and (20) may be solved recursively. If
the initial values ( )D Z N,u m and Du(Z, Nm) are known, where
(Z, Nm) denotes the rightmost isotope within an isotopic chain,
subsequent determinations of Du and Du can be made. For the
far-right isotope (Z, Nm), devoid of incoming arcs from the
right, ( )D Z N,u m equals 1, while Du(Z, Nm) equals w(Z,
Nm)—both of which are known quantities. Thus, all

( )D Z N,u and Du(Z, N) can be recursively determined for the
given isotopic chain.

Additional useful recursive relations may be derived. One
such relationship is the ratio of ( )D Z N,ℓ to Dℓ(Z, N), denoted

as Fℓ(Z, N), which is expressed as:
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Likewise, the ratio of ( )D Z N,u to Du(Z, N), denoted as
Fu(Z, N), is expressed as:
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From Equation (21), Fℓ(Z,N) can be derived if Fℓ(Z,N− 1) is
known. Thus, knowing Fℓ(Z,N0), the value of the far-left
isotope, is the only requisite to compute all Fℓ(Z,N). Given

( )D Z N,ℓ 0 and Dℓ(Z,N0) as 1 and w(Z, N), respectively,
Fℓ(Z,N0) is ( )w Z N

1
, 0

. Similarly, by applying Equation (22), all
Fu(Z,N) can be determined if Fu(Z,Nm), the value of the far-
right isotope, is known. Since ( )D Z N,u m and Du(Z,Nm) are 1
and w(Z,Nm), respectively, Fu(Z,Nm) equates to ( )w Z N

1
, m

.

Consequently, all Fu(Z,N) are computable.
For convenience, if we define the quantities
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we can write Equations (21) and (22) as
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3.3. All Arborescences in One Isotopic Chain

With the definitions and calculations in the previous Section, our
objective now is to derive a comprehensive expression that gives
the determinant for the full matrix, denoted as D(Z, N), for the
isotopic chain as determined from arborescences in the
digraph illustrated in Figure 1. To obtain D(Z, N), we can partition

Figure 5. The subdigraphs corresponding to ( )D Z N,u and Du(Z, N).
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From Equations (17) and (18), it is evident that ( )D Z N,ℓ and
Dℓ(Z, N) can be determined based on ( )D Z N, 1ℓ - and Dℓ(Z,
N− 1), along with the relevant reaction rates. This implies that
if the values of ( )D Z N,ℓ 0 and Dℓ(Z, N0) are known, where (Z,
N0) represents the leftmost isotope in a given isotopic chain, all
subsequent Dℓ and Dℓ within that chain can be computed. For
the initial isotope (Z, N0), where there are no incoming arcs
from the left, ( )D Z N,ℓ 0 is 1, and Dℓ(Z, N0) is equal to w(Z,
N0)—both of which are known quantities. Therefore, ( )D Z N,ℓ
and Dℓ(Z, N) can be calculated recursively.

We now consider the subnetwork with isotopes having
neutron number N or greater. Analogous to the treatment
above, we establish the designations ( )D Z N,u and Du(Z, N) as
shown in Figure 5, representing determinants from the
subdigraphs of isotopes with neutron number N or greater.
The subscript u denotes the upper contribution in this context.
Using the same technique of including or excluding an arc (in
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Again, Equations (19) and (20) may be solved recursively. If
the initial values ( )D Z N,u m and Du(Z, Nm) are known, where
(Z, Nm) denotes the rightmost isotope within an isotopic chain,
subsequent determinations of Du and Du can be made. For the
far-right isotope (Z, Nm), devoid of incoming arcs from the
right, ( )D Z N,u m equals 1, while Du(Z, Nm) equals w(Z,
Nm)—both of which are known quantities. Thus, all

( )D Z N,u and Du(Z, N) can be recursively determined for the
given isotopic chain.

Additional useful recursive relations may be derived. One
such relationship is the ratio of ( )D Z N,ℓ to Dℓ(Z, N), denoted
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Likewise, the ratio of ( )D Z N,u to Du(Z, N), denoted as
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From Equation (21), Fℓ(Z,N) can be derived if Fℓ(Z,N− 1) is
known. Thus, knowing Fℓ(Z,N0), the value of the far-left
isotope, is the only requisite to compute all Fℓ(Z,N). Given

( )D Z N,ℓ 0 and Dℓ(Z,N0) as 1 and w(Z, N), respectively,
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. Similarly, by applying Equation (22), all
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from its original position to the root arc (0 to species
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From Equations (17) and (18), it is evident that ( )D Z N,ℓ and
Dℓ(Z, N) can be determined based on ( )D Z N, 1ℓ - and Dℓ(Z,
N− 1), along with the relevant reaction rates. This implies that
if the values of ( )D Z N,ℓ 0 and Dℓ(Z, N0) are known, where (Z,
N0) represents the leftmost isotope in a given isotopic chain, all
subsequent Dℓ and Dℓ within that chain can be computed. For
the initial isotope (Z, N0), where there are no incoming arcs
from the left, ( )D Z N,ℓ 0 is 1, and Dℓ(Z, N0) is equal to w(Z,
N0)—both of which are known quantities. Therefore, ( )D Z N,ℓ
and Dℓ(Z, N) can be calculated recursively.

We now consider the subnetwork with isotopes having
neutron number N or greater. Analogous to the treatment
above, we establish the designations ( )D Z N,u and Du(Z, N) as
shown in Figure 5, representing determinants from the
subdigraphs of isotopes with neutron number N or greater.
The subscript u denotes the upper contribution in this context.
Using the same technique of including or excluding an arc (in
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Again, Equations (19) and (20) may be solved recursively. If
the initial values ( )D Z N,u m and Du(Z, Nm) are known, where
(Z, Nm) denotes the rightmost isotope within an isotopic chain,
subsequent determinations of Du and Du can be made. For the
far-right isotope (Z, Nm), devoid of incoming arcs from the
right, ( )D Z N,u m equals 1, while Du(Z, Nm) equals w(Z,
Nm)—both of which are known quantities. Thus, all

( )D Z N,u and Du(Z, N) can be recursively determined for the
given isotopic chain.

Additional useful recursive relations may be derived. One
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From Equation (21), Fℓ(Z,N) can be derived if Fℓ(Z,N− 1) is
known. Thus, knowing Fℓ(Z,N0), the value of the far-left
isotope, is the only requisite to compute all Fℓ(Z,N). Given

( )D Z N,ℓ 0 and Dℓ(Z,N0) as 1 and w(Z, N), respectively,
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3.3. All Arborescences in One Isotopic Chain

With the definitions and calculations in the previous Section, our
objective now is to derive a comprehensive expression that gives
the determinant for the full matrix, denoted as D(Z, N), for the
isotopic chain as determined from arborescences in the
digraph illustrated in Figure 1. To obtain D(Z, N), we can partition

Figure 5. The subdigraphs corresponding to ( )D Z N,u and Du(Z, N).
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8. Conclusion
In this study, we developed recursive relations among r-

process isotopic abundances using the matrix-tree and matrix-
forest theorems and illustrated how to use them to compute
abundances in an evolving r-process network. We term these
relations the GrRproc recursive relations. We then validated the
relations by applying them to three network calculations. The
calculations employing the recursive relations gave exactly the

same results as those from more standard treatments. This
validated their correctness.
While the GrRproc relations are valid for computing the

evolution of r-process abundances in a network, their real
usefulness lies in analyzing the complex network flows
occurring during the time steps of a calculation. From the
GrRproc recursive relations, we derived matrix elements
linking the abundance of species ( )Z N,¢ ¢ at t to the abundance

Figure 22. Abundance contribution from 124Y, indicated by a circle, to neighboring nuclides over Δt.

Figure 23. The contribution path from 115Y to 124Mo in equilibrium phase.
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⇒ Yj(t) = ∑
i (∑

𝒫

G(𝒫)( j, t; i,0)]) Yi(0)

dY
dt

= AY

Conclusion




