Clemson University

The Contribution Path Picture of Flows for the s, i, and r Processes

Brad Meyer

- SIRENconf25@gmail.com
- sergio.cristallo@inaf.it
- diego.vescovi@inaf.it

Finanziato dall'Unione europea NextGenerationEU

Ulysses and the Sirens by John William Waterhouse (1891)

ODYSSEUS' TEN-YEAR JOURNEY HOME (POSSIBLE ROUTE ACCORDING TO PETER STRUCK, UNIVERSITY OF PENNSYLVANIA)

MARE LIGUSTICUM

SCHERIA

ODYSSEUS TELLS HIS STORY TO THE PHAEACIANS AND IS OFFERED A RIDE HOME

SIRENS

CREW BLOCKS EARS WITH WAX

TO AVOID SONG MAGIC

AEAEA GODDESS CIRCE TURNS THE CREW TO SWINE

OGYGIA ODYSSEUS HAS A 7-YEAR AFFAIR WITH THE NYMPH CALYPSO

CIMMERIANS

ODYSSEUS ENTERS

THE UNDERWORLD

MARE **IBERICUM**

CY

ME

LAMOS LAESTRYGONIANS KILL AND EAT MOST OF THE CREW

AEOLIA THE CREW OPENS BAG OF WINDS AND IS BLOWN OFF COURSE

LOTOPHAGI (LAND OF LOTUS-EATERS) THE CREW EATS ADDICTIVE FLOWERS AND WANTS TO STAY

MARE

TYRRHENUM

ISMARUS THE CREW PILLAGES TOWN, KIDNAPS CICONES' WIVES. THE CICONES KILL 76

MARE

AEGEUM

SCYLLA MONSTER EATS SIX OF THE CREW

MARE

ADRIATICUM

CYCLOPES ODYSSEUS BLINDS POLYPHEMUS, POSEIDON'S SON

CHARYBDIS MONSTROUS WHIRLPOOL

ITHACA ODYSSEUS RETURNS HOME KILLS THE SUITORS WHO BESET PENELOPE, HIS WIFE,

CAPE MALEA **ODYSSEUS IS BLOWN** OFF COURSE

IONIUM

MARE

CYTHERA STORMS FOR TEN DAYS

THRINACIA THE CREW EATS THE "OXEN OF THE SUN" AND IS PUNISHED BY LEUS, **ODYSSEUS IS THE LONE SURVIVOR**

> MARIS **MEDITERRENEI**

Roberto Gallino and Maurizio Busso (Pasadena 2004)

Don Clayton (1935-2024)

2008—Mount Washington

ANNALS OF PHYSICS: 12: 331-408 (1961)

Neutron Capture Chains in Heavy Element Synthesis*

D. D. CLAYTON, W. A. FOWLER, T. E. HULL, † AND B. A. ZIMMERMAN

Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California

The Universe, too, loves to create whatsoever is destined to be made. —Marcus Aurelius, *Meditations IX*.

The boundary conditions are

 $N_A(0) =$

.

$$d\tau = n_n v_T dt,$$

$$+ \sigma_{A-1} N_{A-1}, \quad 57 \leq A \leq 209, \quad (6)$$

$$=\begin{cases} N_{56}(0) \ A = 56\\ 0 \ A > 56 \end{cases}$$

$$\tau = \int n_n (t) v_T dt.$$

 $N_k(au)$

By substituting back into the equations, it follows that

$$C_{ki} = \frac{\sigma_1 \sigma_2 \sigma_3 \cdots \sigma_{k-1}}{(\sigma_k - \sigma_i)(\sigma_{k-1} - \sigma_i) \cdots (\sigma_2 - \sigma_i)(\sigma_1 - \sigma_i)}, \quad \text{omitting} \quad \left(\frac{1}{\sigma_i - \sigma_i}\right). \quad (8)$$

$$N_k(\tau) = N_1(0)(k-1)! \sum_{i=1}^k \frac{(-1)^{i-1} e^{-\gamma i\tau}}{(k-i)!(i-1)!} = N_1(0) e^{-\gamma \tau} (1-e^{-\gamma \tau})^{k-1}.$$

• - -

$$) = N_1(0) \sum_{i=1}^k C_{ki} e^{-\sigma_i \tau}.$$
 (7)

$$\sigma_k = \gamma k_{\rm c}$$

$$\frac{\sigma_k N_k(\tau)}{N_1(0)} \simeq L^{-1} \frac{1}{\left(\frac{s}{\lambda_k}\right)}$$

$$m_{k} = \frac{\left(\sum_{i=1}^{k} \frac{1}{\sigma_{i}}\right)^{2}}{\sum_{i=1}^{k} \frac{1}{\sigma_{i}^{2}}} = k \frac{\left\langle \frac{1}{\sigma} \right\rangle_{k}}{\left\langle \frac{1}{\sigma^{2}} \right\rangle_{k}},$$

$$\lambda_{k} = \frac{\sum_{i=1}^{k} \frac{1}{\sigma_{i}}}{\sum_{i=1}^{k} \frac{1}{\sigma_{i}^{2}}} = \frac{\left\langle \frac{1}{\sigma} \right\rangle_{k}}{\left\langle \frac{1}{\sigma^{2}} \right\rangle_{k}}.$$

$$\sigma N = 2160\psi(\tau = 0 + 45\psi(\tau = 1))$$

1.1)

Time evolution of a linear, directed network

 $\frac{dY}{dt}$

 $A_{ij} = \begin{cases} \lambda_{ji}, \\ -\Lambda_i = -\sum_{k=1}^n \lambda_{k=1} \end{cases}$

M =

$$\frac{Y}{t} = AY$$

$$i \neq j, 1 \leq i, j \leq n$$

$$\prod_{k=1, k \neq i}^{n} \lambda_{ik}, \quad i = j, 1 \leq i \leq n$$

Y(t) = MY(0)

$$\mathcal{L}^{-1}\left((s-A)^{-1}\right)$$

$$D = det \left(\begin{bmatrix} v_{11} + v_{21} & -v_{12} \\ -v_{21} & v_{22} + v_{12} \end{bmatrix} \right)$$

$D = (v_{11} + v_{21})(v_{22} + v_{12}) - v_{21}v_{12} =$

 $D = v_{11}v_{22} + v_{11}v_{12} + v_{22}v_{11}$

$$= v_{11}v_{22} + v_{11}v_{21} + v_{21}v_{22} + v_{21}v_{12} - v_{21}v_{12}$$

Matrix-Tree Theorem (Tutte 1948)

$$D = det \left(\begin{bmatrix} v_{11} + v_{21} & -v_{12} \\ -v_{21} & v_{22} + v_{12} \end{bmatrix} \right)$$

 $v_{11}v_{22}$

 $D = v_{11}v_{22} + v_{11}v_{12} + v_{22}v_{11}$

 $v_{11}v_{12}$

 $v_{22}v_{21}$

Matrix-Forest Theorem

$$D = det \left(\begin{bmatrix} v_{11} + v_{21} & 1 \\ -v_{21} & 0 \end{bmatrix} \right)$$

$$D = v_{21}$$

Chaiken (1982)

Ghosh and Meyer (2025)

Analytic solution for contribution of species i to species j over time t in a directed, linear network (Ghosh and Meyer 2025)

$$Y(t) = MY(0) \Rightarrow Y_{j}(t) = \sum_{i} M_{ji}Y_{i}(0) \qquad M_{ji} = \sum_{\mathscr{P}} G^{(\mathscr{P})}(j, t; i, 0)$$
$$G^{(\mathscr{P})}(j, t; i, 0) = F^{(\mathscr{P})}\frac{(\Lambda t)^{N(\mathscr{P})-1}}{\left(N(\mathscr{P})-1\right)!} \exp\left[\sum_{j=1}^{\infty} x_{j}\frac{(-t)^{j}}{j!}\right]$$

$$F^{(\mathcal{P})} = \prod_{i=1}^{N(\mathcal{P})-1} \frac{\Lambda_i^{(\mathcal{P})}}{\Lambda_i}$$

$$\Lambda = \left(\prod_{i=1}^{N(\mathcal{P})-1} \Lambda_i\right)^{1/(N(\mathcal{P})-1)}$$

 $B_n(x_1,\ldots,x_n)=\bar{h}_n(\Lambda_1,\ldots,\Lambda_{N(\mathscr{P})})$

 $\tau =$

$$= 3 \ mb^{-1}$$

SIREN

SIREN

SIREN

Hampel et al. (2016)

Neutron number

Figure 1. Neutron capture paths of the models with a constant neutron density of $n = 10^7 \text{ cm}^{-3}$ (upper panel) and $n = 10^{15} \text{ cm}^{-3}$ (lower panel) shown in the

 $n_n = 10^{15} \ cm^{-3} \quad T_9 = 0.15$

Total number of paths = 33 billion

 					- +-			+-			+
	ŀ	Reaction				Path	Occurrences		Path	Percentage	
 					- +-			+-			+
n + f	e56	-> fe57	+	gamma			10000			100.00%	
n + f	e57	-> fe58	+	gamma			10000			100.00%	
n + f	e58	-> fe59	+	gamma			10000			100.00%	
n + f	e59	-> fe60	+	gamma			10000			100.00%	
n + f	e60	-> fe61	+	gamma			10000			100.00%	
n + r	ni64	-> ni65	+	gamma			9974			99.74%	
n + s	e83	-> se84	+	gamma			9973			99.73%	
n + r	ni65	-> ni66	+	gamma			9253			92.53%	
n + g	e77	-> ge78	+	gamma			9187			91.87%	
n + r	ni66	-> ni67	+	gamma			9012			90.12%	
n + s	e82	-> se83	+	gamma			9002			90.02%	
n + g	a74	-> ga75	+	gamma			8415			84.15%	
n + g	e78	-> ge79	+	gamma			7883			78.83%	

sirEN

$$F_{\ell}(Z, N) = \frac{\tilde{D}_{\ell}(Z, N)}{D_{\ell}(Z, N)}$$

=
$$\frac{1 + \lambda_n(Z, N - 1)\Delta t F_{\ell}(Z, N - 1)}{\lambda_{\gamma}(Z, N)\Delta t + w(Z, N)[1 + \lambda_n(Z, N - 1)\Delta t F_{\ell}(Z, N - 1)]}.$$

$$F_u(Z, N) = \frac{\tilde{D}_u(Z, N)}{D_u(Z, N)}$$

=
$$\frac{1 + \lambda_{\gamma}(Z, N+1)\Delta t F_u(Z, N+1)}{\lambda_n(Z, N)\Delta t + w(Z, N)[1 + \lambda_{\gamma}(Z, N+1)\Delta t F_u(Z, N+1)]}.$$

$$\lambda'_{n}(Z, N-1) = \lambda_{n}(Z, N-1)F_{\ell}(Z, N-1)$$
$$\lambda'_{\gamma}(Z, N+1) = \lambda_{\gamma}(Z, N+1)F_{u}(Z, N+1),$$

Figure 23. The contribution path from ¹¹⁵Y to ¹²⁴Mo in equilibrium phase.

 $\frac{dY}{dt} = AY$

Conclusion

 $\Rightarrow Y_{j}(t) = \sum_{i} \left(\sum_{\mathscr{P}} G^{(\mathscr{P})}(j,t;i,0) \right) Y_{i}(0)$