

erc

Speaker: Daniela Mercogliano Authors: D. Mercogliano, A. Best, T. Chillery, D. Rapagnani, M. Vagnoni for the LUNA collaboration daniela.mercogliano@unina.it Department of Physics «E. Pancini» Unina & INFN-Na

s, i & r Element Nucleosynthesis (sirEN) CONFERENCE Giulianova (Italy), 8-13 June 2025 Dedicated to the memory of Prof. Roberto Gallino

Direct experimental determination for $^{22}Ne(\alpha, \gamma)^{26}Mg$ cross section for s-process

State of the art

$$N_A < \sigma v > = \left(\frac{8}{\pi \mu}\right)^{\frac{1}{2}} \frac{N_A}{(k_B T)^{3/2}} \int_0^\infty \sigma(E) E e^{-E_r/k_B T}$$

Need to be known in the Gamow window

 $(E_{\alpha} = 600 - 900 \text{ keV})$

 $^{\Gamma}dE$

State of the art

$$N_A < \sigma v > = \left(\frac{8}{\pi \mu}\right)^{\frac{1}{2}} \frac{N_A}{(k_B T)^{3/2}} \int_0^\infty \sigma(E) E e^{-E_r/k_B T}$$

Need to be known in the Gamow window $(E_{\alpha} = 600 - 900 \text{ keV})$

• Extremely low values of cross-section (~ pb)

 $^{\Gamma}dE$

State of the art

$$N_A < \sigma v > = \left(\frac{8}{\pi \mu}\right)^{\frac{1}{2}} \frac{N_A}{(k_B T)^{3/2}} \int_0^\infty \sigma(E) E e^{-E_r/k_B T}$$

Need to be known in the Gamow window $(E_{\alpha} = 600 - 900 \text{ keV})$

Extremely low values of cross-section (~ pb)

- No data from direct measurements except for the 830 keV resonance
- Discrepancies in indirect data
- Γ_{α} known only as UL

dE

$^{22}\text{Ne}(\alpha, n)^{25}\text{Mg}$

SHADES

European Research Council Established by the European Cor

$\frac{^{22}Ne(\alpha,\gamma)^{26}Mg}{EAS\gamma}$

see A. Best's talk and D. Rapagnani's talk/poster for

>> scientific rationale >> preliminary results

T. Chillery poster for the

>> experimental setup performance evaluation

$\frac{^{22}Ne(\alpha,\gamma)^{26}Mg}{EAS\gamma}$

see A. Best's talk and D. Rapagnani's talk/poster for

scientific rationale >>preliminary results

T. Chillery poster for the

>> experimental setup performance evaluation

Scientific Goal

Experimental setup

Feasibility study results

Experimental study of $^{22}Ne(\alpha,\gamma)^{26}Mg$ in the energy range of astrophysical interest (600-900) keV

- o Location deep-underground
- o Beam induced background reduction
- High-efficiency NaI scintillator array

²²Ne(α , *n*)²⁵Mg with SHADES

⁷Li(²²Ne,t)²⁶Mg in inverse kinematics at TRIUMF

Deep-underground the cosmic-rays background is completely suppressed above 2.6 MeV (blue line). A suppression of 4 o.o.m is achieved below 2.6 MeV by surrounding the detectors with 15 cm of Pb shielding (red)

https://userswww.pd.infn.it/~broggini/WhitePaper/main.pdf.

> Windowless recirculating gas target

99% enriched ²²Ne $N_t = 10^{17}$ atoms/cm³ length 22 cm, Ø 2.2 cm

Best, A.; Rapagnani, D.; Mercogliano, D. Galaxies 2024, 12, 68

➢ Gamma-ray detection setup

 $\eta_{\text{FEP}} = 11\% @ E_{\gamma} = 4 \text{ MeV}$

De-excitation from Ex=11.320 MeV ($E_{res} = 832 \text{ keV}$)

De-excitation from Ex=11.320 MeV ($E_{res} = 832 \text{ keV}$)

De-excitation from Ex=11.171 MeV ($E_{res} = 651 \text{ keV}$)

- Large γ partial width
- Only accessible via indirect measurements

Giensen et al.	Not observed
Talwar et al.	observed
Texas A&M low energy	Not observed
Texas A&M high energy	observed

Yield₁₁₁₇₁(UL) = $3.01 \cdot 10^{-21}$ counts/s I = 500 μ A. \rightarrow N γ in 40 days : 33

De-excitation from Ex=11.171 MeV ($E_{res} = 651 \text{ keV}$)

- Large γ partial width
- Only accessible via indirect measurements ullet

Giensen et al.	Not observed
Talwar et al.	observed
Texas A&M low energy	Not observed
Texas A&M high energy	observed

Yield₁₁₁₇₁(UL) = $3.01 \cdot 10^{-21}$ counts/s $I = 500 \ \mu A. \rightarrow N\gamma \text{ in } 40 \text{ days} : 33$

9

EASγ Current status and outlook

Gas target characterization

□ Study of the beam induced background

Design for the active/passive shielding

Characterization of the NaI detector array

Direct measurement at the Bellotti Ion Beam Facility scheduled for the beginning of 2026

Conclusions

- ulletresonance
- \bullet
- \bullet and secondary transitions, thanks to underground setup and lead shielding.
- An elusive state had been simulated (Ex=11.17 MeV) and if confirmed as an α -cluster state, it \bullet would significantly affect nucleosynthesis and stellar models. For the first time, the signal can be directly studied with EAS γ .

Low energy investigations strongly hampered by cosmic-ray background \rightarrow lack of data except for the 835 keV

EASy takes the advantages of low cosmic-ray background (INFN-LNGS) to improve sensitivity. Simulations to quantify this enhancement, other variables as beam induced background need to be considered though.

Simulation for the de-excitation of 11.32 MeV state (835 keV resonance) shows clear detection of primary

Conclusions

- \bullet resonance
- \bullet
- lacksquareand secondary transitions, thanks to underground setup and lead shielding.
- An elusive state had been simulated (Ex=11.17 MeV) and if confirmed as an α -cluster state, it \bullet would significantly affect nucleosynthesis and stellar models. For the first time, the signal can be directly studied with $EAS\gamma$.

Thank you for the attention!

Low energy investigations strongly hampered by cosmic-ray background \rightarrow lack of data except for the 835 keV

EASy takes the advantages of low cosmic-ray background (INFN-LNGS) to improve sensitivity. Simulations to quantify this enhancement, other variables as beam induced background need to be considered though.

Simulation for the de-excitation of 11.32 MeV state (835 keV resonance) shows clear detection of primary

