

Italiadomani

Solar Abundances for nuclei beyond Sr: s, i or r element nucleosynthesis? S. Palmerini and M. Busso

Solar System Abundances

s + *r* = 1 or s + r + i = 1

r-process: the classical waiting-point approach

- It documents the importance of the N = 50, 82, and 126 bottlenecks of the r-matter flow
- It shows the general patterns of the different r-process scenarios

- It is completely site-independent
- It assumes:
 - chemical equilibrium between fast (n, γ) and (γ , n) within isotopic chains
 - β-equilibrium during the freeze-out phase within isobaric chains.

r-process: the classical waiting-point approach

- It documents the importance of the N = 50, 82, and 126 bottlenecks of the r-matter flow
- It shows the general patterns of the different r-process scenarios

- It is completely site-independent
- It assumes:
 - chemical equilibrium between fast (n,γ) and (γ,n) within isotopic chains
 - β-equilibrium during the freeze-out phase within isobaric chains.

r-process yields from the classical waiting-point approach and the SS abundance:

A. n_n = 10^{20} cm^{-3} and τ_r = 1.2 s

- a "best fit" of the A $\simeq 80$ r-process peak from N $\simeq 50$
- It mimics the isotopic distributions of Sr, Zr, Mo, and Ru in type X presolar SiC grains (ccSNe)
- B. n_n = 10^{22} cm^{-3} and τ_r = 1.7 s
 - It covers the r-region up to the A \simeq 130 peak, from Er (Z = 68) to Yb (Z = 70).
 - It mimics the distribution of metal-poor, r-poor, or stars with [Eu/Fe] $\lesssim 0.2$ (weak r-process)

C. n_n = 10^{24} cm^{-3} and τ_r = 2.1 s

- it covers the R.E.E. reagion and the third r-process peak at A \simeq 195, up to the actinides.
- It "mimics" the elemental abundances of the so-called r-enriched metal-poor halo stars with [Eu/Fe] ≥ + 0.8 (the main or strong rprocess patter)

r-process yields from the classical waiting-point approach and the SS abundance:

A. $n_n = 10^{20} \text{ cm}^{-3}$ and $\tau_r = 1.2 \text{ s}$

- a "best fit" of the A $\simeq 80$ r-process peak from N $\simeq 50$
- It mimics the isotopic distributions of Sr, Zr, Mo, and Ru in type X presolar SiC grains (ccSNe)
- B. n_n = 10^{22} cm^{-3} and τ_r = 1.7 s
 - It covers the r-region up to the A \simeq 130 peak, from Er (Z = 68) to Yb (Z = 70).
 - It mimics the distribution of metal-poor, r-poor, or stars with [Eu/Fe] $\lesssim 0.2$ (weak r-process)

C. n_n = 10^{24} cm^{-3} and τ_r = 2.1 s

- it covers the R.E.E. reagion and the third r-process peak at A \simeq 195, up to the actinides.
- It "mimics" the elemental abundances of the so-called r-enriched Replace n_n with Y_e to find the proper nucleosynthesis rprocess environments

r-process yields from the classical waiting-point approach and the SS abundance:

- Distribution of r-process fractional abundances as estimated by the waiting-point approximation
- the second r-peak was normalized to ¹²⁸Te and ¹³⁰Te, assumed to be ronly (by our models, their sfractions are predicted to be ≤1%)
- The third r-peak was normalized to been normalized to the top of the peak with its r-only isotopes of Os, Ir, and Pt,

(Main) s-process ingredients

Nuclear Physics

- MACS (stellar cross sections for neutron captures)
- β-decay rates... in stellar conditions

Astrophysics

• ...

• Mixing process in stars

(Main) s-process ingredients

Nuclear Physics

MACs from ASTRAL and Kadonis 0.3 database

β± decays and e.c. from Takahashi and Yokoi (1987) if not by Taioli et al.

Stellar Physics

Magneto-hydrodynamic mechanism for the formation of the ¹³C+pocket based on the 3D solutions of MHD equations.

From Nucci & Busso 2004 to Palmerini et al 2021

(MHD) ¹³C-POCKET FORMATION:

The density of envelope material injected (downflow mass) into the Helayers will vary as: $d\rho_d/\rho_d = +\alpha dr$ corresponding to an exponential profile: $\rho_d(r) = \rho_{d,0}e^{-\alpha(r_e - r)}$ We multiplied for the infinitesimal element of volume: $dM_d(r) = 4\pi r^2 \rho_e e^{-\alpha(r_e - r)} dr.$ After integration between envelope border and the innest layer, we obtain: $\Delta M_d^H \simeq 0.714 \frac{4\pi \rho_E}{\alpha} \left\{ \left[r_e^2 - \frac{2}{\alpha} r_e + \frac{2}{\alpha^2} \right] - \left[r_p^2 - \frac{2}{\alpha} r_p + \frac{2}{\alpha^2} \right] e^{-\alpha(r_e - r_p)} \right\}$ Comparing this result with the mass transported by magnetic buoyancy

$$M_{up} = \dot{M} \cdot \Delta t = 4\pi r_e^2 \rho_e v_e f_1 f_2 \Delta t$$

we obtain the **amount of proton injested** in the He-rich region for the formation of the ¹³C-pocket

- ✓ N&B conditions are satisfied;
- ✓ the exact analytical solutions of the MHD equations are held;
- \checkmark the formation of ¹³C-pocket is allowed

(MHD) ¹³C-POCKET FORMATION:

(MHD) ¹³C-POCKET FORMATION:

FINGER-PRINTS OF THE MHD ¹³C POCKET

- A stongly reduced synthesis of fresh ¹⁹F from nitrogen => F abundances predicted as a function of metallicity in agreement with observations (see Vescovi et al 2021, and the poster by Brady)
- A very limited action of the neutron poisons
- A reduced ¹⁴N concentration also implies a reduced formation of ²²Ne.

BRANCHING POINTS as BENCHMARCK FOR THE S-PROCESS...IN PRESOLAR GRAINS

BRANCHING POINTS as BENCHMARCK FOR THE S-PROCESS...IN PRESOLAR GRAINS

BRANCHING POINTS as BENCHMARCK FOR THE S-PROCESS...IN PRESOLAR GRAINS

...around N = 50; the ⁸⁵Kr branching is highlighted by the red arrows.

- o ⁸⁵Kr^m (305 keV) $t_{1/2}$ ≈4.5h
- o ⁸⁵Kr^g $t_{1/2}$ ≈10.5 yr
- $\sigma_{(n,\gamma)}(^{84}\text{Kr}) = 33.1 \text{ mb} @ 30 \text{keV}$
- $\sigma_{(n,\gamma)}(^{85}$ Kr) = 73 \pm 34 mb @ 30keV
- Kadonis 1:
 - ⁸⁵Kr b.r. = 0. 6, (60% of the n flux to the
 ⁸⁵Kr^m)
- Kadonis 0.3:
 - ⁸⁵Kr b.r. = 0.4, (40% of the n flux to the ⁸⁵Kr^m)
 K0.3 -> more ⁸⁸Sr
 - Same effect would occur with the 84 Kr(n, γ) in K1 and a «new» 85 Kr^m decay rate

BRANCHING POINTS as BENCHMARCK FOR THE S-PROCESS...

 @ 3 10⁸K the decay rate of ¹³⁴Cs is enhanced by a factor of about 200. (TY 1987)

from DHF calculations... T+22 ApJ 933:158

LIGHT S AND HEAVY S RESULTS

Figure 13. Same as Figure 12, but for the test models V2, with tentatively modified nuclear inputs (see Section 3).

...but stellar physics can help too

The advection of magnetic bubble in the stellar envelope may allow the existence of C-rich domains, isolated by magnetic tension, even when the average envelop composition is still O-rich.

Busso et al. ApJ 908, 55 (2021)

Test it with:

Presolar grains

Solar System Abundances

Post-AGB spectra

Test it with:

Solar System Abundances

Post-AGB spectra

Test it with:

Solar System Abundances

• Post-AGB spectra

PLEASE WAIT FOR THE NEWT CONFERENCE

Test it with:

Solar System Abundances

Post-AGB spectra

PLEASE WAIT FOR THE NEWT CONFERENCE

The s-process Solar abundace distribution

Distribution of s-process abundances in the mass range 88 \leq A \leq 142 as obtained with s-process yields from MHD ¹³C pocket of AGB stars for M = 1.3, 1.5, 2.0, and 3.0 M_{\odot} and -0.8 \leq [Fe/H] \leq 0.1with:

- a dominant contribution from the ¹³C(α,n)¹⁶O because of:
 - a moderate temperature in the thermal pulses
 - An extended ¹³C distributions with little 14N
- the solar abundances are reproduced with an average dispersion around 11% but for:
 - the s-only isotopes (in red) that are predicted close to 100%
 - the isotopes with a large r-process contribution

⁹⁸Mo

- Solar abundance is obtined from presolar SiC grains of AGB origins
- estimate from the waitingpoint approch: 75.7%
- yields from AGB models 42.3%

⁹⁸Mo

- Solar abundance is obtined from presolar SiC grains of AGB origins
- estimate from the waitingpoint approch: 75.7%
- yields from AGB models 42.3%

Is this value s+i?

• i-process

• ???

¹⁰⁶Pd and ¹¹⁸Sn

• A very complex «nuclear» situation characterizes the region from Pd to Sn

even-even

Z = 50,

¹⁰⁶Pd and ¹¹⁸Sn

• A very complex «nuclear» situation characterizes the region from Pd to Sn

¹³⁵Ba

- The s-process production remains very uncertain due to the adopted decay rates of Cs isotopes
- The fit to the s-only nuclei ^{134,136}Ba is improved thanks to the new estimates for ^{134,135}Cs half-lives
- The effects of the new Cs isotope decay rates at the temperature of the He-shell in AGB stars (where it can be produced too) have to be tested

¹³⁵Ba

- The s-process production remains very uncertain due to the adopted decay rates of Cs isotopes
- The fit to the s-only nuclei ^{134,136}Ba is improved thanks to the new estimates for ^{134,135}Cs half-lives
- The effects of the new Cs isotope decay rates at the temperature of the He-shell in AGB stars (where it can be produced too) have to be tested

¹³⁵Ba

- Can the origin of the discrepancy come from the rprocess apprach?
 - in the β-delayed neutronbranchings during the decay back to stability only negligible fractions of the initial abundance of ¹³⁵In and ¹³⁸Sn reach ¹³⁵Ba.
 - while the 40% of the initial ¹³⁶Sn populates ¹³⁵Ba, but the resulting effect is only a slight reduction in the final S.S. r-fraction of ¹³⁵Ba (maybe by ~ 10%).

Reproducing the SS distribution above A = 142

- Estimates for S.S. abundances of heavy nuclei (A ≥ 142) from our yields
 - a general good reproduction of the solar abundances for s-only nuclei (red dots
 - three very remarkable outlayers: ¹⁷⁶Lu, ¹⁷⁶Hf, and ¹⁸⁷Os
- nuclear problems known since a long time:
 - ¹⁷⁶Hf, ¹⁷⁶Lu and ¹⁸⁷Re dacay rates should be (exerimentally) verified in stellar plasma conditions
 - isomeric states at ¹⁷⁵Yb, ¹⁷⁶Lu, and ¹⁷⁷Hf are involved in the s-process reaction chain.

Reproducing the SS distribution above A = 142

• Estimates for S.S. abundances of heavy

Lots of uncertainty for the sprocess, lots of uncertainty for the rprocess and lots of space for the i-process