Identifying r-process Elements in Kilonova Infrared Spectra

Salma Rahmouni (Tohoku University, Japan)

Masaomi Tanaka (Tohoku U.), Nanae Domoto (UTokyo), Kato Daiji (NIFS), Kenta Hotokezaka (UTokyo), Wako Aoki (NAOJ)

sirEN (@Giulianova 2025)

Neutron star merger

Decay of new heavy elements powers an electromagnetic emission

"Kilonova"

Kilonova of GW170817 observed in 2017

GW170817 DECam observation (0.5–1.5 days post merger)

Soares-Santos et al. (2017)

Simplified picture of NSM ejecta

GW170817 spectrum

Goal

Quantify the mass ejected of elements in **NSMs to ultimately understand** r-process nucleosynthesis

First step: Spectral Investigation

GW170817 spectrum

Previous Work

Spectral Investigation of GW170817

Experimental

57	58	59	60	61	62	⁶³	64	65	66	67	68	69	70
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	HO	Er	Tm	Yb
89	90	91	92	93	94	95	96	⁹⁷	98	99	100	¹⁰¹	102
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	Nc

Previous Work

Spectral Investigation of GW170817

heavy elements in Infrared

Near-Infrared

Pian et al. (2017)

Identification of La and Ce (Domoto et al. 2022)

Method: Complete theoretical transition data calibrated for important elements

Elements on the left side of the periodic table are most likely to show strong features

1 H																	² He
3 Li	⁴ Be											5 B	6 C	7 N	8 O	9 F	¹⁰ Ne
11 Na	¹² Mg											13 Al	¹⁴ Si	15 P	16 S	17 Cl	¹⁸ Ar
19	²⁰	21	22	23	²⁴	²⁵	26	27	28	29	³⁰	Ga	³²	33	³⁴	³⁵	³⁶
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn		Ge	As	Se	Br	Kr
³⁷	³⁸	- 39	o	41	42	43	44	45	46	47	48	49	⁵⁰	51	52	53	54
Rb	Sr	Y	Ir	Nb	Mo	TC	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
55	⁵⁶		72	73	74	75	76	77	78	⁷⁹	80	81	82	83	⁸⁴	⁸⁵	⁸⁶
CS	Ba		Hf	Ta	W	Re	OS	r	Pt	Au	Hg	T	Pb	Bi	Po	At	Rn
⁸⁷	⁸⁸		¹⁰⁴	105	106	¹⁰⁷	108	109	110	111	¹¹²	113	114	115	116	117	¹¹⁸
Fr	Ra		Rf	Db	Sg	Bh	HS	Mt	Ds	Rg	Cn	Nh	F	Mc	LC	TS	Og

57 58 La Ce	⁹ ⁶⁰ ⁶¹ ⁶² ⁶³ ⁶⁴ ⁶⁵ ⁶⁶ Nd ^{Pm} Sm ^{Eu} ⁶³ ^{Gd} ^{Tb} ^{Dy}	67 68 69 70 71 Ho Er Tm Yb Lu
89 90 Ac Th	91 92 93 94 95 96 97 98 Va Va Np Pu Am Cm Bk Cf	99 100 101 102 103 Es Fm Md No Lr

Confirmation of lanthanides production! AT2017gfo Sr Hybrid 10^{-14} const ∓ 10⁻¹⁵ ⊦ **GW170817** Å⁻¹) Ce III °⊢ E 10^{−16} ν δ. 10⁻¹⁷ ×nμ 10⁻¹⁸ Model _a Ce III 10^{-18} Ca II YI, Zr ШШ. 5000 10000 15000 20000 25000 0 Wavelength (Å)

dentification of La and Ce (Domoto et al. 2022)

Elements on the left side of the periodic table are most likely to show strong features

1 H																² He	
Li	4 Be	Li	mi	tat	io	<u>n:</u>	na	CC	ura	ιсу	of	th	eol	reti	ca	l ca	alcu
19 K 37 Rb							Ar	e t	he	ere	ot	he	r e	ler	ne	nts	s tha
55 CS	56 Ba	72 Hf	73 Ta	74 W	75 Re	76 OS	77 r	78 Pt	79 Au	⁸⁰ Hg	81 TI	82 Pb	⁸³ Bi	84 Po	⁸⁵ At	⁸⁶ Rn	I
87 Fr	⁸⁸ Ra	¹⁰⁴ Rf	105 Db	¹⁰⁶ Sg	¹⁰⁷ Bh	108 HS	109 Mt	110 DS	\mathbf{Rg}^{111}	¹¹² Cn	113 Nh	114 F	115 Мс	116 LC	117 TS	¹¹⁸ Og	

57 La (⁵⁸ Ce	59 Pr	60 Nd	Pm S	62 63 Sm Eu	Gd ⁶⁴	65 Tb	66 Dy	67 HO	68 Er	⁶⁹ Tm	70 Yb	⁷¹ Lu
89	⁹⁰	⁹¹	92	93	94 95	96	97	98	99	100	¹⁰¹	102	103
Ac	Th	Pa	U	Np	Pu Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Method: Complete theoretical transition data calibrated for important elements

Confirmation of lanthanides production! AT2017gfo Sr Hybrid 10^{-14} const -15

lations limits the uniqueness of such identifications at can explain the infrared features?

Results

Candidate elements with strong transitions in Infrared

Lanthanide and actinide structure involving several open shells leads to many low-lying energy levels and many transitions in infrared

→ Lanthanides and actinides are important for spectral investigations

Results

Candidate elements with strong transitions in Infrared

Similar to La and Ce, Gd has many interesting properties making it worth investigating

Perhaps an exception to the "left-side of periodic table" rule?

Common properties of La, Ce, and Gd 1- Atomic structure

 \rightarrow low-lying energy levels

Half-filled 4f shell, the extra electron acts as a valence electron \rightarrow low-lying energy levels

Common properties of La, Ce, and Gd

 \rightarrow Such lines may appear in the kilonova spectra as well

Radiative Transfer Simulations

- Use wavelength-dependent radiative transfer code (Tanaka+13)
- Assume a similar abundance among lanthanides
- Investigate the effect Gd III has on the near-infrared spectrum besides La III and Ce III.

Radiative Transfer Simulations

Synthetic spectra at 1.5 days

Comparison with GW170817

Comparison with GW170817

Summary:

- We were able to identify several r-process elements in kilonova infrared spectra: La III, Ce III and Gd III
- The detection of such elements in GW170817 is consistent with a constant abundance distribution among lanthanides

Further details on: Rahmouni et al. (2025) ApJ 980,43

 \rightarrow Further observations are still necessary for better abundance constraints

Sun spectra

⁵⁷ La	Ce	59 Pr	⁶⁰ Nd	${\stackrel{^{61}}{Pm}}$	Sm	⁶³ Eu	G4 Gd	65 Tb	⁶⁶ Dy	67 H0	68 Er	Tm	70 Yb
⁸⁹	⁹⁰	⁹¹	92	⁹³	94	⁹⁵	96	⁹⁷	98	99	¹⁰⁰	$\overset{101}{Md}$	102
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm		No

https://en.wikipedia.org/wiki/Fraunhofer_lines

- low-lying energy levels = higher
- - = small number of transitions = high transition probability

lonization

Cerium is typically secondly ionized in early-time Kilonovae spectrum. → we expect other lanthanides to show similar ionization

Gd III lines in HR 465

Time Evolution of Spectra

Gd III effect disappears before that of La III due to the higher ionization potential of Gd II compared to La II