Magnetar giant flares: a new site for the *r*-process

Ani Patel - sirEN Conference - Giulianova, Italy - June 10, 2025.

Direct evidence for r-process nucleosynthesis in delayed MeV emission from the SGR 1806-20 magnetar giant flare

ANIRUDH PATEL,¹ BRIAN D. METZGER,^{1,2} JAKUB CEHULA,³ ERIC BURNS,⁴ JARED A. GOLDBERG,² AND TODD A. THOMPSON^{5,6,7}

r-Process Nucleosynthesis and Radioactively Powered Transients from Magnetar Giant Flares

ANIRUDH PATEL,¹ BRIAN D. METZGER,^{1,2} JARED A. GOLDBERG,² JAKUB CEHULA,³ TODD A. THOMPSON,^{4,5,6} AND MATHIEU RENZO^{7,2}

Center for Computational Astrophysics

Current landscape of *r***-process sites**

Neutron Star Mergers

e.g. Lattimer & Schramm 74, 76; Freiburghaus+99

magneto-rotational SNe + proto-mag

(e.g. Nishimura+06, Burrows+07, Winteler+12, Mosta+14)

e + proto-magnetar winds

(e.g. Thompson+04, Metzger+07, Desai+23, Prasanna+24, Prasanna+**including A.P.** in prep.)

Collapsar Disk winds

(e.g. Kohri+2005, Siegal+2019)

Ani Patel

Current landscape of *r***-process sites**

Neutron Star Mergers

e.g. Lattimer & Schramm 74, 76; Freiburghaus+99

160

140

120

100

80.

60 -

Entropy [k_B baryon⁻¹]

magneto-rotational SNe + proto-ma

(e.g. Nishimura+06, Burrows+07, Winteler+12, Mosta+14)

e + proto-magnetar winds (e.g. Thompson+04, Metzger+07

(e.g. Thompson+04, Metzger+07, Desai+23, Prasanna+24, Prasanna+**including A.P.** in prep.)

Collapsar Disk winds

(e.g. Kohri+2005, Siegal+2019)

Ani Patel

New landscape of *r*-process sites

("normal" CCSNe)

Confirmed

Neutron Star Mergers

e.g. Lattimer & Schramm 74, 76; Freiburghaus+99

Confirmed

Magnetar Giant Flares Cehula+24, Patel+(2025a, 2025b)

magneto-rotational SNe +

(e.g. Nishimura+06, Burrows+07, Winteler+12, Mosta+14)

proto-magnetar winds

(e.g. Thompson+04, Metzger+07, Desai+23, Prasanna+24, Prasanna+including A.P. in prep.)

Collapsar Disk winds

(e.g. Kohri+2005, Siegal+2019)

Ani Patel

Magnetars (soft gamma repeaters) vs. Pulsars ("normal" neutrons stars)

	Pulsars	Magnetars
B (G)	$\sim 10^{12-13}$	$\sim 10^{14-15}$
P (s)	$\lesssim 5$	$\lesssim 10$
Lifetime (yr)	$\sim 10^7$	$\sim 10^{3-4}$
Power Source	Rotation	Magnetic Field

Born in ~10-50% of CCSNe

Magnetar Giant Flares (GFs)

 $B \sim 10^{14} - 10^{15} \text{ G}$ $E_{\text{GF}} \sim 10^{44} - 10^{46} \text{ erg}$

3 nearby events: 1979, 1998, **2004**

Radio Afterglow From GFs

Radio Afterglow: Evidence for Baryon Ejection

A Possible Mechanism for Baryon Ejection

Jakub Cehula et al. (2024)

Properties of Unbound Ejecta (Cehula+2024)

Shock jump conditions: $\rho, e \rightarrow EOS \rightarrow s, T$

Nucleosynthesis Calculations

Ani Patel

Nucleosynthesis Calculations

$$M_{\rm ej} \approx 10^{-6} M_{\odot}$$
$$Y_e = 0.40$$
$$\overleftarrow{v} = 0.15c$$

Optical/UV Emission: a "Mini-Kilonova"

Mini-kilonovae: less mass, shorter duration

A third EM component in ~MeV?

Radioactive Gamma Ray Emission

$$\rho \sim \frac{M_{\rm ej}}{4\pi R^3} \propto t^{-3}$$
$$R \approx \bar{v}t$$
$$\tau_{\gamma} \sim \kappa \rho R \propto t^{-2}$$

$$t_{\text{peak}} \approx t_{\tau=1} \sim \left(\frac{\kappa M_{\text{ej}}}{4\pi \bar{v}^2}\right)^{1/2}$$

$$\sim 650 \,\mathrm{s} \left(\frac{M_{\rm ej}}{10^{-6}M_{\odot}}\right)^{1/2} \left(\frac{\bar{\nu}}{0.2c}\right)^{-1}$$

Ani Patel

A 20 year old mystery: delayed MeV emission in the SGR 1806-20 GF

A 20 year old mystery: delayed MeV emission in the SGR 1806-20 GF

A 20 year old mystery: delayed MeV emission in the SGR 1806-20 GF

Calculating gamma-ray emission

$$\dot{q}_{\gamma}(t) = N_{\mathrm{A}} \sum_{i} Y_{i}(t) \lambda_{i} b_{i} \sum_{j} I_{ij} \varepsilon_{ij},$$

For a nuclear species *i*:

 $Y_i(t)$: number abundance

 λ_i : beta-decay rate

 b_i : photon branching ratio (% of beta decay energy emitted as γ)

 I_{ij} : relative intensity per decay of photon with energy ε_{ij}

Calculating gamma-ray emission

Light-Curve and Fluence

$$M_{ej} \approx 10^{-6} M_{\odot}$$

$$Y_{e} = 0.40$$

$$\bar{v} = 0.15c$$

$$L_{\gamma} = \dot{Q}_{\gamma}(1 - f_{th})$$
Hotokezaka+ 2016
Barnes+ 2016
$$10^{38}$$

$$I_{0}^{-5}$$

$$I_{0}^{$$

 $M_{\rm ej} \approx$

Light-Curve and Fluence

Spectra (unattenuated)

Spectra with (preliminary) MC radiation transport

Spectra with (preliminary) MC radiation transport

Magnetar GFs can contribute ~1-10% of Galactic *r*-process

 $\langle R \rangle \approx 6.9 \times 10^{-2} \,\mathrm{yr}^{-1} \,(E_{\mathrm{GF}}/10^{46} \,\mathrm{erg})^{-0.75} \quad M_{\mathrm{r}} \langle R \rangle = \langle \dot{M}_{\mathrm{r}} \rangle \quad \approx 0.4 - 6 \times 10^{-8} \,M_{\odot} \,\mathrm{yr}^{-1}$

Magnetars are born early in Galactic history!

Summary: Delayed MeV detection from the SGR 1806-20 GF is consistent with gamma ray emission from $\sim 10^{-6} M_{\odot}$ of *r*-process

Radio Observations

Velocity

- At least 1-10% of Galactic *r*-process
- Operates early in galactic history
- Provides first opportunity to directly observe nuclear line emission from the *r*process
- Can constrain GF operating mechanism and probe magnetar field evolution

FluenceHard Spectrum

Backup

Neutrinos detectable?

Assuming 35% of r-process decay energy emitted as neutrinos, $E_{\nu} \sim 10^{43}$ erg.

 $\langle \varepsilon_{\nu} \rangle \sim 5 \text{ MeV}$

For a supernova with $E_{\nu,\rm SN} \sim 10^{53}$ erg and $\langle \varepsilon_{\nu,\rm SN} \rangle \sim 5$ MeV, HyperK will detect $N_{\nu,\rm SN} \sim 10^4 - 10^5$ neutrinos for a ~ 10 kpc source.

For a magnetar giant flare at similar distance:

$$N_{\nu} \approx N_{\nu,\rm SN} \frac{E_{\nu}}{E_{\nu,\rm SN}} \left(\frac{\langle \varepsilon_{\nu} \rangle}{\langle \varepsilon_{\nu,\rm SN} \rangle}\right)^2 \sim 10^{-6} - 10^{-5}$$

No, it's not from the Sun.

Nucleosynthesis

Figure 7. Variation of the proton fraction Y_p as a function of the mean baryon number density in the outer crust for the nuclear mass models HFB-22, HFB-24, HFB-25, and HFB-26.

Decays

Gamma ray Thermalization

$$\kappa_{\gamma} \approx 0.1 \text{ cm}^{2} \text{ g}^{-1}$$

$$\tau_{\gamma}(r) = \int_{r}^{\infty} \kappa_{\gamma} \rho(r', t) dr'$$

$$N = \max(\tau_{\gamma}, \tau_{\gamma}^{2})$$

$$f_{\text{th}} \approx \begin{cases} 1 - (1/2)^{N}, & \tau_{\gamma} \ge 1\\ N/2, & \tau_{\gamma} \le 1 \end{cases}$$

$$L_{\gamma} = \dot{Q}_{\gamma}(1 - f_{\text{th}})$$

Hotokezaka et al. (2016)

Gamma Ray LC Parameters

anirudh.p@columbia.edu

Nova Brevis LC model

Opacity: $\kappa(t) = X_p(t)\kappa_p + X_{\alpha}\kappa_{\alpha} + X_1\kappa_1 + X_2\kappa_2 + X_3\kappa_3$ (Kasen+2013, Tanaka+2020)

Thermalization:

$$f_{\rm th}(t) = 0.38 \frac{\dot{q}_n(t)}{\dot{q}(t)} + \frac{\dot{q}_r(t)}{\dot{q}(t)} \left[0.25 + 0.4 \left\{ 1 - \exp\left(-\tau(t)\kappa_{\gamma}/\kappa(t)\right) \right\} \right]$$

Attenuated light-curve: $\dot{q}_{\text{heat}}(t) = f_{\text{th}}(t)\dot{q}(t)$

LC model

Alpha Rich Freeze-out 1

Alpha Rich Freeze-out 2

Observed spectrum

Nova Brevis vs Kilonova

Property	Kilonova	Nova Brevis
What	merging neutron stars	flaring neutron stars
Ejecta mass	~10 ⁻² -10 ⁻¹ M _☉	~10 ⁻⁸ -10 ⁻⁶ M _☉
Ejecta velocity	~0.1-0.3 c	~0.1-0.7 c
Peak luminosity	$\sim 10^{41} - 10^{42} \text{ erg/s}$	~10 ³⁸ – 10 ⁴⁰ erg/s
Peak duration	~1 - 10 days	~1–10 min
Rate per galaxy	$\sim 1 / 10^4 - 10^5$ years	~1 / 10 – 100 years
Follows	short* GRB	short "GRB"
Followed by	broadband afterglow	radio afterglow

Nuclei contributing to gamma ray signal

