s, i & r Element Nucleosynthesis (sirEN) CONFERENCE

Diverse Neutron-capture Isotopic Signatures Recorded in Supernova Silicon Carbide Grains

Nan Liu, Boston University Conel Alexander & Jianhua Wang, Carnegie Institution Sergio Cristallo & Diego Vescovi, Osservatorio Astronomico d'Abruzzo Bradley Meyer & Lucas Walls, Clemson University

Different Groups of Supernova SiC Grains

figures from Liu (2024) presolar grains

Different Groups of Supernova SiC Grains

Neutron Burst in He/C Zone

Neutron Burst in He/C Zone

New Data and Neutron-burst Code

1. New Nickel Isotope Data

- Analytical Methods
- Different Signatures

2. Python Code for Data Comparison

- Neutron burst: neutron exposure (τ) , (n, γ) cross section
- Mixing calculations

 $X \times$ Neutron burst + $Y \times$ solar + $(1 - X - Y) \times \alpha$ materialcalculated in step 1shells above He/C
(mainly envelope)Fe/Ni and/or Si/S

Neutron-burst in Ni-Cu-Zn Region

- ⁶⁰⁻⁶⁴Ni are produced during neutron burst that lasts for a few seconds ($\rho_{\text{peak}} \cong 10^{17}$ neutron/cm⁻³) (*Meyer et al. 2000, ApJL*)
- ⁶³Ni decays to ⁶³Cu after the burst and grain formation (within 10s of years)
- Ni-Cu isotope analyses allowed obtaining all Ni isotope ratios

High-resolution NanoSIMS Isotope Imaging

- Presolar SiC grains are enriched in Ni
- Fe and Zn are mainly contamination
- Small regions of interest suppressed interferences and contamination
- δ⁶⁴Ni were calculated for grains with X(⁶⁴Zn) < 50%; X(⁶⁴Zn) = 19% on average

New MS Grain Data Agree Better with AGB Models

- RIMS analysis enables efficient ionization of Ni isotopes, leading to small statistical errors
- NanoSIMS analysis allows for highresolution imaging, suppressing Ni contamination

Literature data are from Trappitsch et al. (2018)

New MS Grain Data Agree Better with AGB Models

THE ASTROPHYSICAL JOURNAL LETTERS, 897:L25 (8pp), 2020 July 10 © 2020. The American Astronomical Society. All rights reserved.

https://doi.org/10.3847/2041-8213/ab9fa1

Diego Vescovi^{1,2,3}, , Sergio Cristallo^{2,3}, Maurizio Busso^{2,4}, and Nan Liu^{5,6} ¹Gran Sasso Science Institute, Viale Francesco Crispi, 7, I-67100 L'Aquila, Italy; diego.vescovi@gssi.it ²INFN, Section of Perugia, Via A. Pascoli snc, I-06123 Perugia, Italy ³INAF, Observatory of Abruzzo, Via Mentore Maggini snc, I-64100 Teramo, Italy ⁴University of Perugia, Department of Physics and Geology, Via A. Pascoli snc, I-06123 Perugia, Italy ⁵Laboratory for Space Sciences and Physics Department, Washington University in St. Louis, St. Louis, MO 63130, USA ⁶McDonnell Center for the Space Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA *Received 2020 May 25; revised 2020 June 18; accepted 2020 June 24; published 2020 July 9*

- RIMS analysis enables efficient ionization of Ni isotopes, leading to small statistical errors
- NanoSIMS analysis allows for highresolution imaging, suppressing Ni contamination
- Our new NanoSIMS data agree better with the AGB model calculations that were calibrated against the heavy-element isotope data of MS grains

Ni Isotope Data Point to Varying Exposures

Ni Isotope Data Point to Varying Exposures

Analytical and Modeling Progress

1. New Nickel Isotope Data

- Analytical Methods
- Different Signatures

2. Python Code for Data Comparison

- Neutron burst: neutron exposure (τ) , (n, γ) cross section (Walls et al. 2025) *available at https://github.com/lucaswalls18/neutron_burst*
- Mixing calculations

X × Neutron burst + Y × solar + $(1-X-Y) \times \alpha$ material

calculated in step 1

shells above He/C (mainly envelope) Fe/Ni and/or Si/S

Nikel Isotopic Pattern Constrains Neutron Exposure

Nikel Isotopic Pattern Constrains Neutron Exposure

C Grain: Mix of Neutron-burst and Fe/Ni Material

Alpha material: Fe/Ni zonal composition in the 25 M_{\odot} model of Rauscher et al. (2002)

C Grain: Mix of Neutron-burst and Fe/Ni Material

Alpha material: Fe/Ni zonal composition in the 25 M_{\odot} model of Rauscher et al. (2002)

C Grain: Mix of Neutron-burst and Fe/Ni Material

X Grains: Mix of Burst, Si/S, and Solar Material

Isotopes

Constraints on Model Fit Parameters

Туре	Tau (mb ⁻¹)	Burst		Fe/Ni or Si/S		Solar	
		Si (%)	Ni(%)	Si(%)	Ni(%)	Si(%)	Ni(%)
С	0.24	50	29	50	71	0	0
Х	0.08	3	24	40	22	57	54
	0.07	5	20	49	59	46	21
	0.07	7	57	61	17	32	27
	0.06	2	24	44	7	54	69
	0.04	8	67	61	2	32	31
	0.04	11	34	44	50	45	16
	0.04	5	31	44	37	51	33
	0.04	4	24	22	22	74	54
	0.03	4	12	57	13	38	45

Constraints on Model Fit Parameters

Туре	Tau (mb ⁻¹)	Burst		Fe/Ni or Si/S		Solar	
		Si (%)	Ni(%)	Si(%)	Ni(%)	Si(%)	Ni(%)
С	0.24	50	29	50	71	0	0
Х	0.08	3	24	40	22	57	54
	0.07	5	20	49	59	46	21
	0.07	7	57	61	17	32	27
	0.06	2	24	44	7	54	69
	0.04	8	67	61	2	32	31
	0.04	11	34	44	50	45	16
	0.04	5	31	44	37	51	33
	0.04	4	24	22	22	74	54
	0.03	4	12	57	13	38	45

- Incorporated Fe/Ni material
- Incorporated no envelope material

- Much lowered neutron exposures
- Incorporated inner Si/S material
- Incorporated significant envelope material

What physical processes led to the different mixing scenarios for C versus X grains?

Grefenstette et al. (2016) ApJ

Conclusions

- The C grain data are in favor of the increased ${}^{63}Ni(n,\gamma){}^{64}Ni$ reaction rate suggested by n_TOF and DANCE measurements and suggest at least a factor of 50 increase in the ${}^{31}Si(n,\gamma){}^{32}Si$ reaction rate
- The C grain data suggest that Fe/Ni zone was more enriched in ⁴⁰Ca and ⁶¹Ni than predicted in Rauscher et al. models
- The C grain incorporated materials from Fe/Ni zone and recorded the strongest neutron-burst signatures, pointing to the highest neutron exposure
- X grains sampled materials from He/C (and shells above) zones with substantial contributions from Si/S zone