
Usage of INAF resources

Pleiadi

Fabio Vitello - INAF OACT

USCVIII - General Assembly

Architecture

PLEIADI is a project by USC VIII-Computing of INAF –
National Institute for Astrophysics, offering
high-performance computing (HPC) and
high-throughput computing (HTC) resources.

Individual researchers and teams belonging to
research projects, European projects, PRIN, INAF
mainstream projects, scientific missions, etc. that
require computing can apply requesting the
resources.

The Pleiadi infrastructures is distributed on the
following sites:

Bologna (IRA), Catania and Trieste (+ soon Palermo)

USCVIII - General Assembly - Usage of INAF resources: Pleiadi

Call for requesting computing e-infra

Resources allocation

System in production since early 2022, resources allocated to special projects, available through
calls (semi-annual) or on-demand assignment.

Resources offered:

● PLEIADI computing system
● Leonardo BOOSTER computing system
● Long-term preservation system of scientific

products at IA2

Available resources - Computing (Cineca)

As part of the agreement with Cineca, INAF offers 1.5 Million Standard Hours which will be usable
from 01/08/2024.

Proposals for computing resources requiring a minimum of 12,500 Standard Hours up to a
maximum of 125,000 Standard Hours will be evaluated. The assigned computing resources will be
available for up to a maximum of 6 months from the aforementioned date of first use

Projects can also require up to 4TB of work storage. Beyond these limits, additional disk resources
may be requested (subject to verification of actual availability by Cineca).

USCVIII - General Assembly - Usage of INAF resources: Pleiadi

call #4

Available resources - Long Term Storage (IA2)

INAF provides long-term data storage spaces, even completely free from the need for computing
resources. These long-term storage spaces will be made available starting from 01/08/2024.

The typical dimensions of the spaces required in each individual proposal are up to 20TB.

Their use may continue until the date indicated and justified by the applicant.

Since data preservation will take place on Tape Library devices, it is advisable to carefully read the
description of the data sharing and preservation services offered by IA2 as well as the description of
the Long-Term Preservation service for the preliminary measures necessary for preparing the data
for the preservation and subsequent recovery of the data.

USCVIII - General Assembly - Usage of INAF resources: Pleiadi

call #4

https://www.ia2.inaf.it/index.php/ia2-services/data-sharing-preservation
https://www.ia2.inaf.it/index.php/ia2-services/data-sharing-preservation/long-term-preservation

Available resources - Computing (Pleiadi)

The call makes a total of 15 Million CORE hours available, which will be usable starting from
01/08/2024.

Proposals for the use of computing e-infra that require a minimum of 100,000 CORE hours up to a
maximum of 500,000 CORE hours will be evaluated.

The assigned computing resources will be available for up to a maximum of 6 months from the
aforementioned date of first use.

USCVIII - General Assembly - Usage of INAF resources: Pleiadi

call #4

Proposal submission

In the application, the proposing research groups will be asked to specify in detail:

● the scientific background,
● the technical characteristics of the code,
● detailing libraries, computing environment, compilers, paradigm and degree of parallelism.
● any constraints on how resources are used (for example dedicated nodes, minimum number of

nodes required per run, execution time of a single run, total memory for a single job,….etc).

Allocated time that is not used in the requested period cannot be recovered later.

USCVIII - General Assembly - Usage of INAF resources: Pleiadi

Proposal submission

Proposers will also be asked to specify the storage space necessary for the execution of the code.
This storage, not subject to backup, will be available for up to 6 months from the end of the
project, and is to be understood as functional for data production (i.e. it does not correspond to
preservation storage).

If long-term saving of the data produced is necessary, it will be necessary to submit a further and
separate request, again via the proposal submission form, for the saving space on Tape Library IA2.

USCVIII - General Assembly - Usage of INAF resources: Pleiadi

Proposal submission

The application for long-term data preservation space must contain all the data necessary for the
evaluation of the request:

● size of preservation storage space requested;
● type, format and size of each scientific product;
● description of the structure of the collection;
● description of the expected frequency of access as well as the data access policy;
● any future plans for publishing the data;
● all information deemed relevant for correct data preservation following the FAIR principles.

USCVIII - General Assembly - Usage of INAF resources: Pleiadi

Additional info and Ex-post activities

Starting from 01/07/2024 (the next day after the closing of the call), it will also be possible to request
computing resources on a “first come, first serve basis”, up to a maximum of 100,000 CORE hours
per project, and until the resources available for this methodology, equal to 5,000,000 CORE
hours, are exhausted.

As regards Cineca and Leonardo BOOSTER, it will be possible to request hours for “tests” up to a
maximum of 10,000 Standard Hours per project. The computing resources assigned in this mode
will be available for up to a maximum of 2 months from the date of first use.

At the end of the project, the proponent will be asked for a short report on the results obtained
and the critical issues encountered using the assigned resources. Failure to send this report
precludes participation in the subsequent call.

USCVIII - General Assembly - Usage of INAF resources: Pleiadi

USCVIII - General Assembly - Usage of INAF resources: Pleiadi

Pleiadi Resources

Bologna

● 48 compute nodes without GPUs

USCVIII - General Assembly - Usage of INAF resources: Pleiadi

Architecture Cluster Linux x86_64

Nodes interconnection Omni-Path HFI Silicon
100 Series, 100 Gbits
interconnect

Service Network Ethernet 1 Gbits

CPU Model Intel(R) Xeon(R) CPU
E5-2697 v4 @ 2.30GHz

Number of Nodes 48

Operating System Debian 11

Workload manager SLURM 20.11.7

Storage volume 200 TB, Lustre parallel
filesystem (quota is 10
TB per user)

Catania

● 72 compute nodes without GPUs (12
with a RAM memory of 256 GB and 60
with a RAM memory of 128 GB)

● 6 compute nodes with 1 GPU each (4 of
Tesla K40m type, of 12 GB of memory
each, and 2 of Tesla V100 PCIe type, of
16 GB of memory each), with a RAM
memory of 128 GB

USCVIII - General Assembly - Usage of INAF resources: Pleiadi

Architecture Cluster Linux x86_64

Nodes interconnection Omni-Path HFI Silicon
100 Series, 100 Gbits
interconnect

Service Network Ethernet 1 Gbits

CPU Model Intel(R) Xeon(R) CPU
E5-2697 v4 @ 2.30GHz

Number of Nodes 78

Operating System CentOS Linux release
7.9.2009

Workload manager SLURM 21.08.5

Storage volume 174TB, BeeGFS parallel
filesystem

Trieste

● 60 compute nodes without GPUs (all
with 256 GB of RAM)

● 6 compute nodes with 1 GPU each
(Tesla K80 and 128 GB of RAM)

USCVIII - General Assembly - Usage of INAF resources: Pleiadi

Architecture Cluster Linux x86_64

Nodes interconnection Omni-Path HFI Silicon
100 Series, 100 Gbits
interconnect

Service Network Ethernet 1 Gbits

CPU Model Intel(R) Xeon(R) CPU
E5-2697 v4 @ 2.30GHz

Number of Nodes 66

Operating System CentOS Linux release
7.9.2009

Workload manager SLURM 19.05.50

Storage volume 480TB, BeeGFS
parallel filesystem

Accessing Pleiadi

Accessing Pleiadi

USCVIII - General Assembly - Usage of INAF resources: Pleiadi

client frontend
Scheduler

computing
nodes

Accessing Pleiadi

USCVIII - General Assembly - Usage of INAF resources: Pleiadi

client frontend
Scheduler

computing
nodes

Accessing Pleiadi

The access to the cluster depends on the Operating System present on your personal laptop. If you
have a Linux, Unix or OSX Operating System you can use the ssh client from command line, from
whichever terminal. If you have a Windows Operating System on your laptop, it is recommended to
use the PuTTY application.

Specifically, to connect to the Pleiadi cluster frontend

as a user with a certain username, execute:

$ ssh <username>@<frontend>

Bologna: scheduler.ira.inaf.it

Catania: pleiadi.oact.inaf.it

Trieste: amonra.oats.inaf.it

USCVIII - General Assembly - Usage of INAF resources: Pleiadi

http://amonra.oats.inaf.it/

Accessing Pleiadi

USCVIII - General Assembly - Usage of INAF resources: Pleiadi

client frontend
Scheduler

computing
nodes

Running jobs on Pleiadi

Cluster Frontend

Once you have completed the previous step, you will be connected to what is referred to as a "login
node" or "head node." These nodes link the cluster to the outside world and are intended for basic
tasks such as:

● Managing files
● Submitting jobs to the compute nodes
● Uploading and downloading data
● Compiling software (*)

While small-scale interactive code and tests are allowed on the login nodes, it is important to
remember that these nodes are shared by all users. Therefore, any resource-intensive code must be
handled by the compute nodes.

Any resource-heavy jobs found running on login nodes may be terminated without warning.

USCVIII - General Assembly - Usage of INAF resources: Pleiadi

Accessing Pleiadi

USCVIII - General Assembly - Usage of INAF resources: Pleiadi

client frontend
Scheduler

computing
nodes

Slurm Job Scheduler

SLURM is the workload manager and job scheduler used on the Pleiadi cluster. It efficiently
manages the allocation of computational resources and schedules jobs to run on the compute
nodes.

Key points to keep in mind when working with SLURM:

● You must request resources (e.g., CPUs, memory, GPUs) through SLURM commands
(srun/salloc) or job scripts (sbatch).

● SLURM manages job queues, allowing for efficient resource allocation based on priority and
availability.

● It can handle both simple single-node jobs and more complex multi-node parallel jobs.

For detailed usage instructions, refer to the official SLURM documentation:
SLURM Documentation

USCVIII - General Assembly - Usage of INAF resources: Pleiadi

https://slurm.schedmd.com/documentation.html

sbatch

The typical way to submit a job to the compute nodes is by writing a job submission script. This
script allows you to specify the resources needed and the commands to run. It is composed of three
main parts, which must appear in the following order:

1. Interpreter Declaration:
The first line of the script specifies the interpreter that will be used to run the script (e.g., bash).

2. #SBATCH Directives:
These lines tell SLURM how to allocate resources for your job, such as the number of nodes,
CPUs, memory, and the walltime

3. Executable Code:
After the directives, add the actual commands or the script you want to run. This is where you
invoke your program or workflow.

USCVIII - General Assembly - Usage of INAF resources: Pleiadi

sbatch directives - basic settings

#SBATCH lines typically look something like #SBATCH <parameter> <argument>

USCVIII - General Assembly - Usage of INAF resources: Pleiadi

Parameter Function

--job-name=<name>
job name to be displayed

--output=<path> Path to the file where the job (error)
output is written to

--mail-type=<type> Turn on mail notification; type can be one
of BEGIN, END, FAIL, REQUEUE or ALL

--mail-user=<email_address> Email address to send notifications to

sbatch directives - Requesting resources

USCVIII - General Assembly - Usage of INAF resources: Pleiadi

Parameter Function

--time=<d-hh:mm:ss> Time limit for job. Job will be killed by SLURM after time has run out.

--nodes=<num_nodes> Number of nodes. Multiple nodes are only useful for jobs with
distributed-memory (e.g. MPI).

--mem=<MB> Memory (RAM) per node. Number followed by unit prefix, e.g. 16G

--mem-per-cpu=<MB> Memory (RAM) per requested CPU core

--ntasks=<num_procs> Number of processes. Useful for MPI jobs.

--ntasks-per-node=<num_procs> Number of (MPI) processes per node. More than one useful only for MPI jobs.

--cpus-per-task=<num_threads>
CPU cores per task. For MPI use one. For parallelized applications benchmark
this is the number of threads.

--exclusive Job will not share nodes with other running jobs.

sbatch directives - Accounting & Advanced job control

USCVIII - General Assembly - Usage of INAF resources: Pleiadi

Parameter Function

--account=<name> Project (not user) account the job should be charged to.

--partition=<name> Partition/queue in which o run the job.

Parameter Function

–dependency=<state:jobid> Wait with the start of the job until specified dependencies have been
satisfied. E.g. –dependency=afterok:123456

–ntasks-per-core=2
Enables hyperthreading. Only useful in special circumstances.

Serial Job

Many simple tools and scripts are not parallelized at all and therefore cannot profit from more than one CPU

core.

USCVIII - General Assembly - Usage of INAF resources: Pleiadi

Parameter Function

--nodes=1 Start a serial job on only one node

--ntasks-per-node=1 Only one task is necessary

--cpus-per-task=1 Just one CPU core will be used.

--mem=<MB> Memory (RAM) for the job. Number followed by unit prefix, e.g. 16G

OpenMP Job

USCVIII - General Assembly - Usage of INAF resources: Pleiadi

Parameter Function

–nodes=1 Start the job on one node

–ntasks-per-node=1 For OpenMP, only one task is necessary

–cpus-per-task=<num_threads> Number of threads to use

–mem=<MB>
Memory (RAM) for the job. Number followed by
unit prefix, e.g. 16G

MPI Job

USCVIII - General Assembly - Usage of INAF resources: Pleiadi

Parameter Function

--nodes=<num_nodes>
Start a parallel job for a distributed memory
system on several nodes

--ntasks-per-node=<num_procs>
Number of (MPI) processes per node. Maximum
number depends nodes (36 on pleiadi)

--cpus-per-task=1 Use one CPU core per task.

--exclusive
Job will not share nodes with other running
jobs. You don’t need to specify memory as you
will get all available on the node.

sbatch example

USCVIII - General Assembly - Usage of INAF resources: Pleiadi

An example sbatch script may look something like this:

#!/bin/bash
#SBATCH --ntasks 1 #Request 1 tasks (cores)
#SBATCH --nodes 1 #Request 1 node
#SBATCH --time 0-00:30 #Request runtime of 30 minutes
#SBATCH --partition 256g #Run on sched_engaging_default partition
#SBATCH --mem-per-cpu=4000 #Request 4G of memory per CPU
#SBATCH --output output_%j.txt #redirect output to output_JOBID.txt
#SBATCH --mail-type=BEGIN,END #Mail when job starts and ends
#SBATCH --mail-user=test@test.com #email recipient

echo "Hello World" #execute the echo command

sbatch example

USCVIII - General Assembly - Usage of INAF resources: Pleiadi

An example sbatch script for an openMP job:

#!/bin/bash
#SBATCH --job-name=openmp_job # Job name
#SBATCH --output=output_%j.txt # Output file (%j is the job ID)
#SBATCH --ntasks=1 # Run on a single node
#SBATCH --cpus-per-task=8 # Request 8 CPU cores for OpenMP threads
#SBATCH --time=00:30:00 # Maximum run time of 30 minutes
#SBATCH --partition=256g # Use the "256g" partition

Set the number of threads for OpenMP
export OMP_NUM_THREADS=8

Run the OpenMP program
./my_openmp_program

sbatch example

USCVIII - General Assembly - Usage of INAF resources: Pleiadi

An example sbatch script for an mpi job:

#!/bin/bash
#SBATCH --job-name=mpi_job # Job name
#SBATCH --output=output_%j.txt # Output file (%j is the job ID)
#SBATCH --ntasks=16 # Request 16 MPI tasks
#SBATCH --nodes=4 # Request 4 nodes (will distribute tasks
across nodes)
#SBATCH --ntasks-per-node=4 # 4 tasks per node
#SBATCH --time=01:00:00 # Maximum run time of 1 hour
#SBATCH --partition=256g # Use the "256g" partition

Run the MPI program
mpirun ./my_mpi_program

srun & salloc

Interactive jobs can be executed using either srun or salloc, allowing for flexible real-time control
over allocated resources.

Both of these commands take slurm directive as command line arguments rather than #SBATCH
directives in a file.

salloc is used to allocate resources (e.g., CPUs, memory) for an interactive session, giving you a
shell prompt where you can manually launch tasks. This is useful when you want to experiment or
run multiple commands interactively within the same session.

Example:

salloc --ntasks=4 --cpus-per-task=2 --mem=8G --time=01:00:00

USCVIII - General Assembly - Usage of INAF resources: Pleiadi

srun & salloc

srun is more versatile and can be used in two ways:

Within a resource allocation (like salloc):
After using salloc, you can launch parallel tasks across the allocated resources with srun. This allows
you to run your programs within the interactive session.

srun --ntasks=4 ./my_program

Directly allocate and run a program:
srun can both allocate resources and directly execute a program in one step, without needing a job
script. This is useful for running quick, interactive jobs.

srun --ntasks=4 --cpus-per-task=2 --mem=4G ./my_program

USCVIII - General Assembly - Usage of INAF resources: Pleiadi

Loading software modules

The user’s environment, including available software, is managed through the module command.
This allows you to load, unload, and switch between different software packages and libraries easily.

View available modules:
To see all the modules available on the system:
module avail

Load a module:
Once you've found the module you want, load it into your environment using the following
commands:
module load <module_name>

USCVIII - General Assembly - Usage of INAF resources: Pleiadi

Loading software modules

List loaded modules:
To check which modules are currently loaded in your environment, run:
module list

Remove a module:
To unload a specific module from your environment, use:
module rm <module_name>

Remove all modules:
To reset your environment by removing all loaded modules:
module purge

USCVIII - General Assembly - Usage of INAF resources: Pleiadi

Monitoring of the used CPU hours

To monitor the utilization of the CPU hours assigned when the account was activated by the board
members, according to the user’s request, you can use the SLURM report command sreport, for
example with the following options:

$ sreport -t Hour cluster AccountUtilizationByAccount account=<username>
start=M1/DD1/YY1end=M2/DD2/YY2

USCVIII - General Assembly - Usage of INAF resources: Pleiadi

Pleiadi computing documentation

The information provided in these slides is only a brief overview of how to work with the Pleiadi
computing cluster. For comprehensive details on usage, configurations, and specific instructions,
please refer to the full documentation for each site:

● Catania:
Full documentation is available online:
Pleiadi @ Catania Documentation

● Bologna:
Visit the IRA Wiki for detailed user guidelines:
Pleiadi @ IRA User Guide

● Trieste:
The documentation can be accessed directly from the frontend machine.

USCVIII - General Assembly - Usage of INAF resources: Pleiadi

https://pleiadi.readthedocs.io/en/latest/index.html
https://wiki.ira.inaf.it/index.php/Pleiadi@IRA_User_Guide_EN

Pleiadi team & contacts

Bologna: Francesco Bedosti, Matteo Gandolfi

Catania: Fabio Vitello, Salvatore Scavo

Trieste: Giuliano Taffoni, Gianmarco Maggio

For technical assistance on the assigned resources, ticketing System:

pleiadi-help@ced.inaf.it

For general information:

info.pleiadi@inaf.it

USCVIII - General Assembly - Usage of INAF resources: Pleiadi

mailto:pleiadi-help@ced.inaf.it

