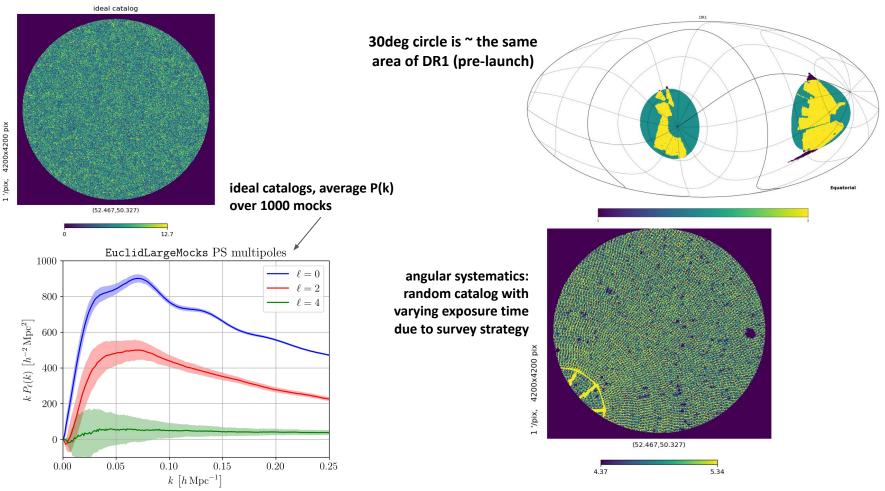
Computing in Euclid-IT Science (Cosmology)

Carmelita Carbone (on behalf of many people)

Meeting "INAF USCVIII – General Assembly", Galzignano, 14-18 Oct 2024

Motivations for HPC computing in Euclid

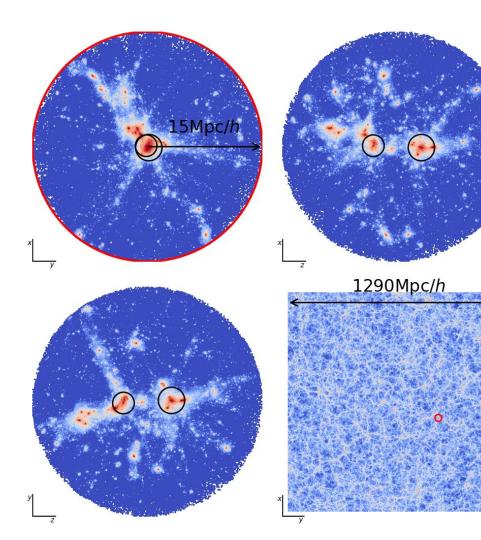
- Computing resources for SWGs (Melita's talk) and SGS (Daniele's talk): different needs for different data analyses of upcoming big data
- Different cosmological probes (GC, WL, Galaxy Clusters, CMBX, ...): computational resources for cosmological N-body simulations/mock catalogues, parameter inference, modelling, and single/joint-probe analyses


Computing for Euclid Galaxy Clustering

(P. Monaco, E. Sefusatti, M. Lepinzan, T. Castro, L. Tornatore, E. Sarpa, G. Parimbelli ++)

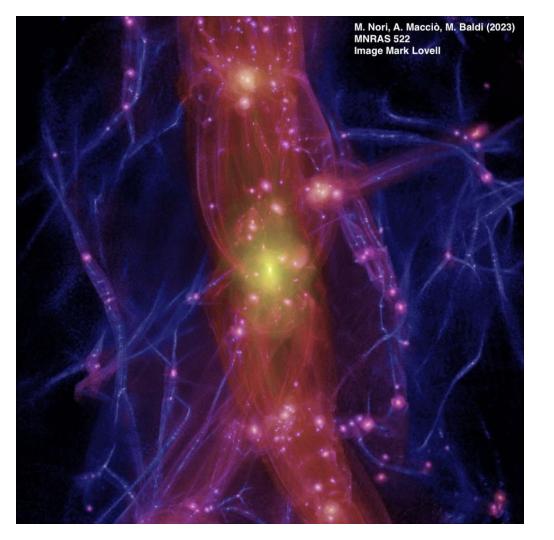
- Computing resources to run PINOCCHIO simulations for the GC covariance (3500 smaller simulations + 1000 big simulations that cover half of the sky): INFN computing time (euclid project), Galileo100@CINECA and ISCRA-B grant, Galileo100@CINECA and UniTS-CINECA agreement
 - -> total of ~5M core-hr.
 - + Pleiadi system for smaller runs (700,000 core-h).
- 2. Development: ICSC/Spoke3, 700,000 gpu-hr on Leonardo@CINECA.
- 3. Postprocessing (creation of galaxy catalogs, application of systematics, mixing matrix, power spectrum measurement): -> Pleiadi system.

The 1000 EuclidLargeMocks are the largest collection of DM halos on the past light cone ever produced! (paper + press release in preparation).


PINOCCHIO Mocks: adding systematics to ideal catalogs

Computing for Euclid Cluster Cosmology

(S. Borgani, T. Castro, M. Costanzi, R. Ingrao, A. Saro)


- 1. The needed resources for the activities inside the SWG-CL WP-9 for <u>Galaxy Cluster Simulations</u> has been covered in the past by:
- Leonardo@CINECA Early Access Project (~20M core-hr)
- ISCRA-B/CINECA project (~2M core-hr) on cineca
- Couple of small ISCRA-C/CINECA projects for code development (~100k core-hr)
- DRES storage on CINECA (80TB)
- INAF-IA2 Storage (50TB)
- ⇒ Future activities are covered at the moment by a EuroHPC recently approved project on Leonardo-DCGP (+20M core/h; PI: T. Castro)
- 2. Resources to run chains for <u>cosmological posteriors</u>
- So far based on the use of local clusters (AMONRA@INAF-OATs)
- For DR1 data analysis: expected ~2M core-hr; ISCRA-B@CINECA sufficient in principle, but dedicated and flexible INAF resources would be welcome.

Galaxy clusters and line-of-sight projection effects credits: Tiago Castro (OATS)

Cosmological simulations for beyond-LCDM models in Euclid (M. Baldi)

- 1. Simulations of cosmologies beyond LCDM are necessary to achieve Euclid goals on constraining Dark Sector models and have been used in activities of SWG-TH, SWG-CS-WP8, PL-KP-JP6, using computational resources from:
 - 1.1. **PRACE Multi-year Access**: 15 Mio CPU hrs on MareNostrum4 (*DUSTGRAIN* simulations, P.I. M. Baldi)
 - 1.2. **ISCRA-B projects SIMCODE2 and DZSH**: ~2 Mio CPU hrs on Marconi (*DUSTGRAIN-pathfinder* and *DAKAR2* simulations, P.I. M. Baldi)
 - 1.3. ISCRA-C projects DZS, EuNuComp, EuKey, PANDAG4: ~150k CPU hrs on Marconi, Marconi-100, Galileo-100 (*MassiveNu* Code Comparison simulations, *DUSTGRAIN-pathfinder* extension for HOWLS project)
 - 1.4. INFN-InDark resources at Cineca: ~200k CPU hrs on Marconi-100, Galileo-100 (CIDER simulations)
 - 1.5. INFN-Euclid resources at Cineca: ~600k CPU hrs on Galileo-100, Leonardo (*CIDER* simulations)
- 2. Storage resources have been provided by:
 - 2.1. INFN-CNAF data center under Euclid-INFN agreement: ~400TB on disk → storing all raw data and processed data
 - **2.2.** Local Bologna cluster: ~20 TB on disk purchased on personal research fundings (M. Baldi) → temporary storage of data for analysis
 - **2.3. PIC data center** (Spain): few TB \rightarrow final products presented in Euclid Publication (for data availability policies)

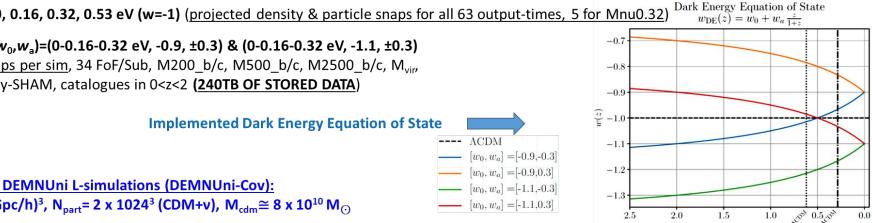
Matter density distribution around an Aquarius halo (Milky-Way like) obtained via AX-Gadget in a Fuzzy dark Matter scenario. Credits: Marco Baldi (UniBO)

Cosmological simulations for beyond-LCDM cosmology in Euclid Carmelita Carbone: DEMNUni campaign

16 DEMNUni XL-simulations:

V=(2 Gpc/h)³, N_{part}= 2 x 2048³ (CDM+v), $M_{cdm} \cong 8 \times 10^{10} M_{\odot}$

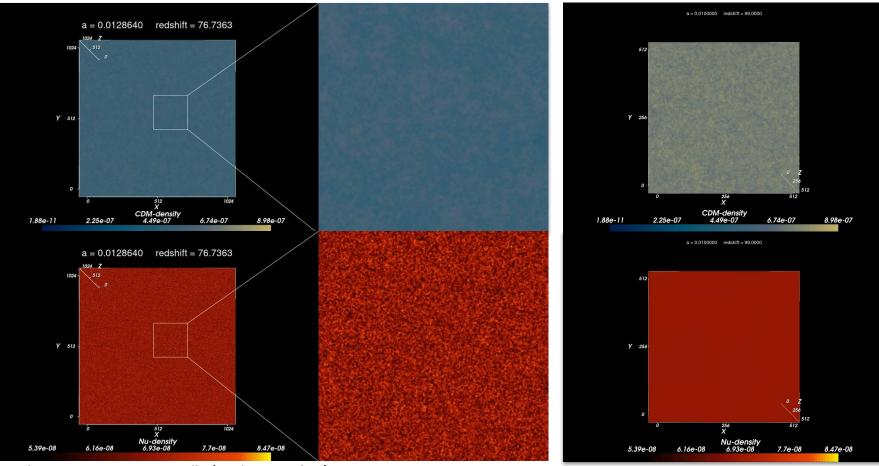
baseline Planck cosmology (according to Euclid SWG-coord meeting 11/06/2013)


- M_v=0, 0.16, 0.32, 0.53 eV (w=-1) (projected density & particle snaps for all 63 output-times, 5 for Mnu0.32) $w_{\rm DE}(z) = w_0 + w_a \frac{z}{1+z}$
- $(M_{y}, w_{0}, w_{a}) = (0 0.16 0.32 \text{ eV}, -0.9, \pm 0.3) \& (0 0.16 0.32 \text{ eV}, -1.1, \pm 0.3)$ 5 snaps per sim, 34 FoF/Sub, M200_b/c, M500_b/c, M2500_b/c, M_{vir}, galaxy-SHAM, catalogues in 0<z<2 (240TB OF STORED DATA)

50+50 DEMNUni L-simulations (DEMNUni-Cov): V=(1 Gpc/h)³, N_{part}= 2 x 1024³ (CDM+v), $M_{cdm} \cong 8 \times 10^{10} M_{\odot}$

25 2.0 1.5 50 sims Planck-LCDM; Mnu=0 eV: 63 full particle snapshots/sim, FoF/Sub, M200_b/c, M500_b/c, M2500_b/c, Mvir catalogs for 34 outputtimes between z=2 and z=0. Projected densities maps available at all output-times. (110TB of stored data)

- 50 sims Planck-LCDM; Mnu=0.16 eV: 5 full particle snapshots/sim, FoF/Sub, M200_b/c, M500_b/c, M2500_b/c, M_{vir} catalogs for 34 output-times between z=2 and z=0. (30TB of stored data)
- DEMNUni M-simulations (DEMNUni-HigRes): V=(500 Mpc/h)³, N_{part}= 2 x 2048³ (CDM+v), M_{cdm}≅ 1.3 x 10⁹ M_☉
- 2 sims Planck-LCDM; Mnu=0,0.16,0.32 eV: (resolution enough for Euclid Halpha galaxies)


Total of 26M cpu-hr and 400TB storage @CINECA/INAF/IA2

DEMNUni applications to Euclid

- KP-CL-3 pre-launch paper-4 "Halo mass function and bias in non-standard models" of the Galaxy-Clusters SWG.
- KP-CL-3 pre-launch paper-1 "Calibration of the halo mass function in Λ(v) cosmologies" Castro et al. A&A 671, A100 (2023)
- KP-CMBX-2 pre-launch paper2 "CMBX Mock Simulations" in CMBX SWG.
- KP-JC-6 pre-launch paper-3 "Simulations & non-linearities beyond ACDM" joint Theory and Cosmo-SIM SWGs.
- KP-TH-1 pre-launch paper-6 "Euclid: Nonlinear spectroscopic clustering in beyond-ACDM scenarios with Euclid", Theory SWG.
- KP-CMBX-2 pre-launch paper-6 "Numerical covariances for CMB cross Euclid" (calibration of FLASK lognormal mocks against DEMNUni-CoV mocks)
- KP-CL-2 "Euclid preparation: Determining the weak lensing mass accuracy and precision for galaxy clusters", arXiv:2409.02783

DEMNUni simulations: structure formation in vw_0w_a CDM scenarios

Credits: Tuccari, Sciacca, Vitello (Spoke1&Spoke3)

Analytical Covariances and future likelihood activities

(C. Carbone, S. Camera, M. Baldi, M. Calabrese, C. Giocoli, V. Cardone, D. Sciotti et al.)

1. Resources to run chains for 3x2pt (weak lensing, photo-gc and the cross) cosmological posteriors:

Runs performed on KiDS infrastructures (NL), france computers (F) and UK facilities

- 2. Resources to compute the 3x2pt X CMB covariance matrices with FLASK Simulations: Marseille cluster available
- 3. Future activities for DR1 KPs (e.g. DR1-JC1, DR1-JC2, DR1-TH1) not yet covered by sufficient computational resources.
 - a. Estimated resources to compute the 3x2pt covariance matrix terms and accounting for survey masks & GLASS Simulations: ~ 2M cpu-hr and up to 1TB of data
 - b. Ongoing applications for cosmological parameter inference:
 - i. EuroHPC call for Euclid DR1 KPs (coordinated by B. Joachimi)
 - ii. DiRAC call for computational time in UK (coordinated by K. Koyama and Pedro Carrilho)

Computing resources in Euclid

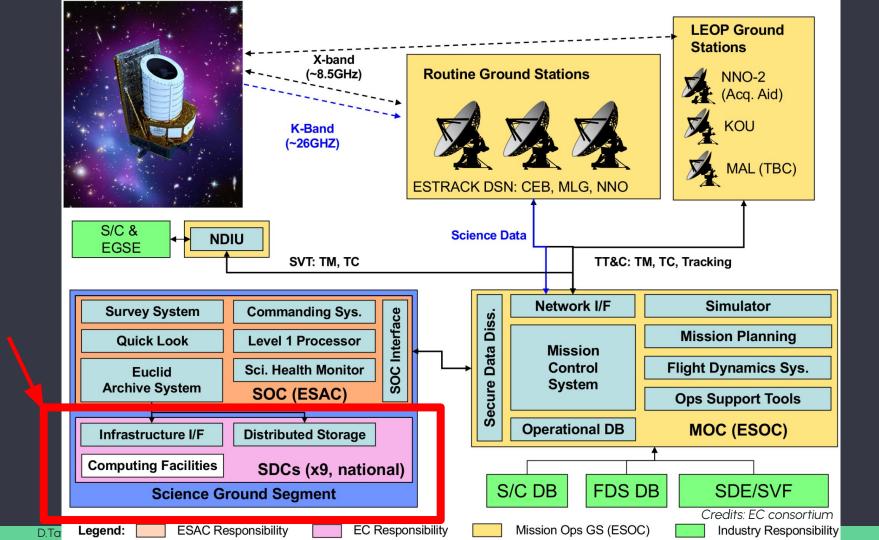
- Computing resources for SGS (see table below for OULE3 dated 2020)
- No guaranteed computing resources for science (simulations, covariances, likelihood): only applying to public calls

PF	CPU [core/hours]	Memory [GB]	H/W	Comments
2PCF-GC	2000	150	Xeon E5-2680 v3 with clock speed 2.50 GHz. Each node had 24 physical cores. Nodes have 256GB RAM.	Estimated from Flagship Euclid Wide mock catalog
PK-GC	8	120	Workstation with 1 core with a 3.2GHz Xeon processor.	Estimated from Euclid-size mock catalogs
3PCF-GC	450000	300	2GHz processor.	Extrapolated from smaller catalogs
BK-3PCF	200	1100	Intel Xeon CPU E5-4627 v3 with , 2.60 GHz processor and 250 GB RAM	Extrapolated from smaller catalogs
CM-2PCF-GC	2000x3500	150x3500		Extrapolated from smaller catalog
CM-PK-GC	8x3500	300x3500		Extrapolated from smaller catalogs
VMSP-ID	Deep 1 Wide 6000	Deep 70GB Wide 2GB/Tile	1 core Xeon CPU E5-2630 v2 @ 2.60GHz 128 GB RAM	Full flagship extrapolated from 1 tile
SEL-ID				

Euclid Science Ground Segment data processing

INAF USCVIII General Assembly, Galzignano, 14–18 Oct 2024

Daniele Tavagnacco on behalf of SDC-IT (A.Zacchei, M.Frailis, E.Romelli, S.Galeotta, T.Gasparetto, G.Maggio, D.Maino, F.Rizzo, T.Vassallo, R.Giusteri)

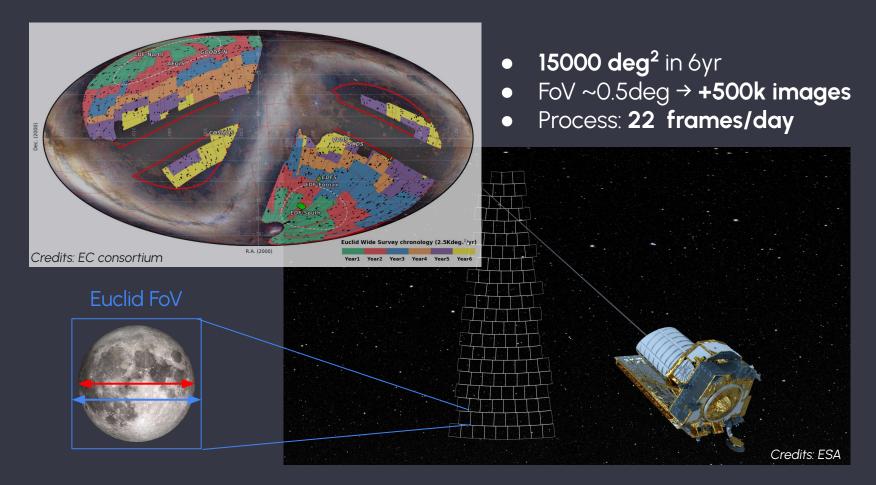

SGS role in Euclid

Define, Organize and Maintain the data analysis infrastructure (ST)

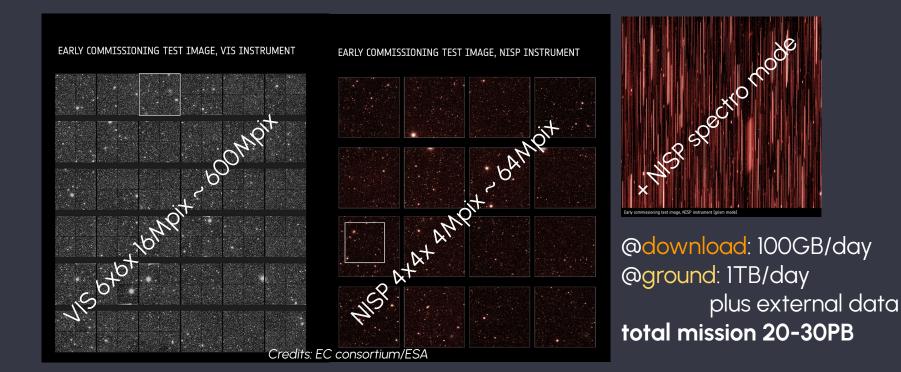

Manage and monitor the instrument and the sky survey progression (IOT)

Process raw data into final science products (OT)

D.Tavagnacco - USCVIII General Assembly - Galzignano, 14-18 Oct 2024



- 1 July 2023
- Sun-Earth Lagrange point 2 (L2)
- 6yr nominal mission
- 1.20m primary mirror
- VISible instrument
- Near InfraRead/Spectro instrument


"Euclid is designed to explore the evolution of the dark Universe. It will make a 3D-map of the Universe [...] across more than a third of the sky"

[https://www.esa.int/Science_Exploration/Space_Science/Euclid_overview]

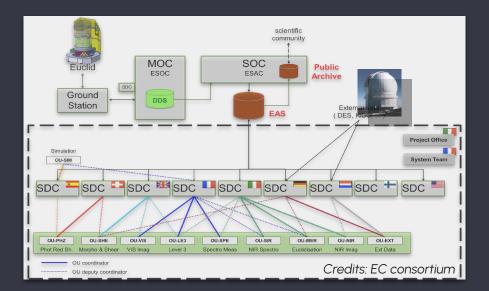
D.Tavagnacco - USCVIII General Assembly - Galzignano, 14–18 Oct 2024

raw data images

constraints

Large **Data Volume** (500+k raw images, external data)

Varied dataset on the processing flow (images \rightarrow catalogs \rightarrow science data)

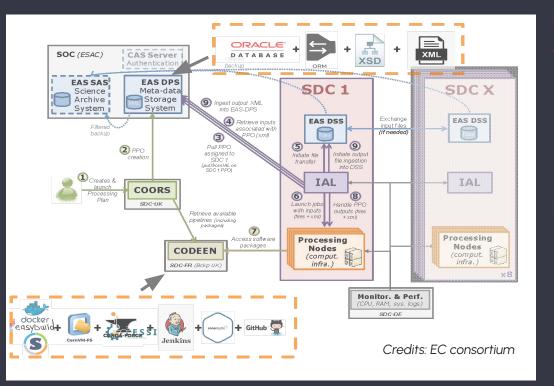

Continuously evolving Software (data → instrument knowledge → better algorithms)

Euclid SGS as a distributed system

Science Data Centers national HPC facilities (run) develop. expertise (integration)

Organization Units

processing definition (algorithms) science expertise (requirements)



SDC + OU

SW pipelines development/optimization/test/integration/maintenance

... 9 SDCs... 9 OUs... ~1500 persons

SDC(s)

EAS - Distributed Storage System (DSS)

- Object Storage, SDC
- http data transfer -transparent
- mainly FITS and HDF5 formats

EAS - Data Processing System

- central metadata archive
- Object-to-relational mapping
- Custom query language (REST)
- data product oriented db
- Products as XML files

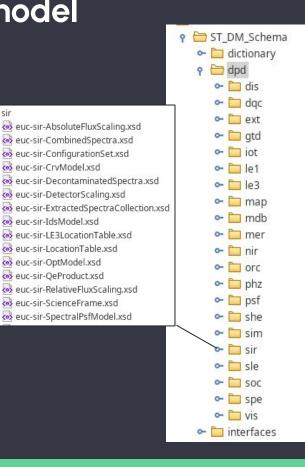
Euclid common data model

🕈 🥽 sir

euc-sir-AbsoluteFluxScaling.xsd

euc-sir-CombinedSpectra.xsd

euc-sir-ConfigurationSet.xsd

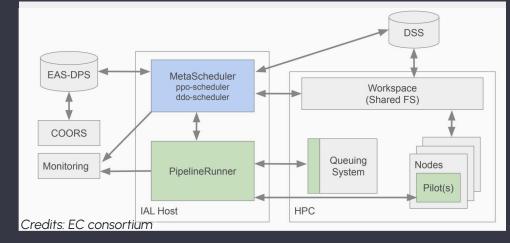

euc-sir-DetectorScaling.xsd

euc-sir-CrvModel.xsd

euc-sir-IdsModel.xsd

- FAS Data and Metadata
- XSD to formalize products
- description of metadata and data evolution via Change Control Board igodol

```
euc-sir-LE3LocationTable.xsd
   <xs:complexType name="dpdSirCombinedSpectra">
                                                                                                                      euc-sir-LocationTable.xsd
       <xs:sequence>
                                                                                                                      euc-sir-OptModel.xsd
           <xs:element name="Header" type="sys:genericHeader">
               <xs:annotation> <xs:documentation>Product Generic Header</xs:documentation> </xs:annotation>
                                                                                                                      euc-sir-OeProduct.xsd
           </xs:element>
                                                                                                                      euc-sir-RelativeFluxScaling.xsd
           <xs:element name="Data" type="sir:sirCombinedSpectra">
                                                                                                                       euc-sir-ScienceFrame.xsd
               <xs:annotation> <xs:documentation>Product data container</xs:documentation> </xs:annotation>
                                                                                                                      euc-sir-SpectralPsfModel.xsd
           </xs:element>
           <xs:element name="QualityFlags" type="dqc:sqfPlaceHolder" minOccurs="0">
               <xs:annotation> <xs:documentation>Product Quality Flags</xs:documentation> </xs:annotation>
           </xs:element>
           <xs:element name="Parameters" type="ppr:genericKeyValueParameters" minOccurs="0">
               <xs:annotation> <xs:documentation>Product Optional Parameters</xs:documentation> </xs:annotation>
           </xs:element>
       </xs:sequence>
   </xs:complexType>
</xs:schema>
```



Infrastructure Abstraction Layer

national HPC facilities → possible different HW

- common meta-scheduler
- workflow manager
- common queuing systems

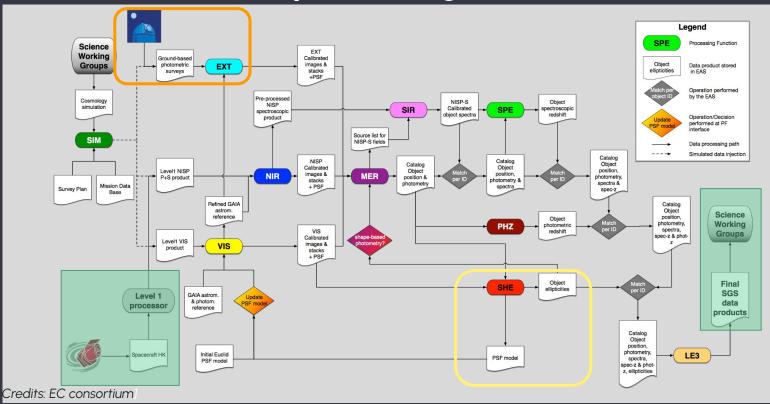
Workflow (pipelines) definition

- Python scripts specifying relations and requirements of each (PF)
- enforced PF I/O description
- stateless processing

Processing: payload job as common "pilot jobs", profiling of jobs

Infrastructure Abstraction Layer

national HPC facilities → possible different HW


- common meta-scheduler
- workflow manager
- common queuing systems

Workflow (pipelines) definition

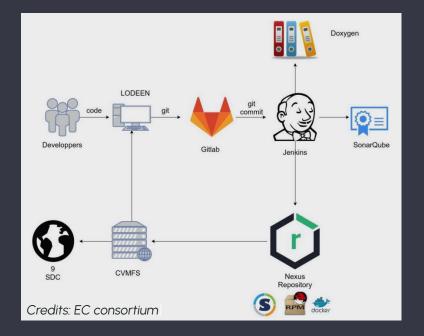
- Python scripts specifying relations and requirements of each (PF)
- enforced PF I/O description
- stateless processing

Processing as payload job on common "pilot jobs", profiling of jobs

Euclid processing workflow

Software lifecycle in Euclid SGS

Data processing organized in steps (Processing Functions)


- several software projects
- different life cycle timings

Different requirements/granularity

- minimal set of infrastructure req.
- common environment

Multiple datacenters (SDCs)

- synchronization of SW
- different infrastructures

Gitflow workflow + Jenkins CI/CD + CVMFS packages distribution

D.Tavagnacco - USCVIII General Assembly - Galzignano, 14–18 Oct 2024

SDC-IT* computing infrastructure

development "SDC-IT-DEV" → OATs

- 15 nodes: 40 phys cores (no HT), 256GB RAM each node
- 1 node: 32 cores, 180GB RAM, 4x NVIDIA V100 16GB
- 650 TB of parallel storage (BeeGFS)
- InfiniBand

integration/testing "SDC-IT-INT" → **ALTEC** (Turin)

- 8 nodes: 48 cores (24 phys), 256 GB RAM
- 4 nodes: 64 cores (32 phys), 1 TB RAM
- 730TB fast storage (Lustre) and Tier 2 storage shared with OPS

production "SDC-IT-OPS" → ALTEC (Turin)

- 12 nodes: 128 cores (64 phys), 1 TB RAM
- 9 nodes: 192 cores (96 phys), 768 GB RAM
- 2 nodes: 192 cores (96 phys); 1.5 TB RAM
- 1.4 PB fast storage (Lustre) + 4.4 PB Tier 2 general storage + 6 PB Tier 3 Tape Lib.
- InfiniBand

...few takeaway notes

within a project, SGS is one of the longest-lived elements

technologies evolve during SGS lifecycle

SGS design/implementation and project design/development are entangled

SGS activities require various expertise to cover all operational fields

The Euclid, similarly to other mission like GAIA, Planck, and others, formed a community of experts, that is now an asset for INAF in perspective of future large missions and projects