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Plenty of HUGE data and problems. Examples: Euclid, SKA

Goals:
• find if some of actual methods/problems can benefit from 

QC (select some toy models; examine & discard; test 
most promising with emulators)

• think/investigate NEW ways of approaching old problems 

R. Scaramella et al.: The Euclid Wide Survey

Fig. 46. RSD 2021A (14 514 deg2) chronology shown in celestial coordinates. RoI boundaries are shown as solid red lines. Blinding stars cause
809 avoidance areas within the reference survey, with an average of 0.785 deg2 per avoidance area, totalling 635 deg2. Dashed lines (1300 deg2

in white per Galactic cap) delimit the highest S/N areas. The ecliptic referential is over-plotted in red. The three EDFs (bright green) and the six
EAFs (red diamonds, not to scale) are shown.

area of ⇠2696 deg2) are left unobserved. These correspond to
the uncoloured areas in the islands and at low latitudes in the
mainlands. The areas of the sky with longitudes between 150�
and 225�, and between 330� and 45�, are observable at the same
time since they are separated by 180�. They contain much area
within the RoI, and moreover the EDF-F and EDF-S are also
located there. This means that there is not enough time for the
EWS to observe all that area in the six years of the mission and
hence their worst-quality regions are not observed.

The RSD contains 44 065 fields (28 080 to build the EWS and
15 985 for EDFs, EAFs and calibration targets observations). The
EWS fields are contained in 256 patches (seen in Figs. 45 and 46).
The vast majority of the field slews, used to point the telescope, are
below 1�.2, as shown in the right panel of Fig. 47. This is the most
e�cient slew regime in terms of propellant usage. As shown in
Fig. 47, all telescope rotations are done within the allowed SAA
and AA limits. Most of the observations are done close to tran-
sit, with 90% of the SAA values used between 88� and 94�. The
statistics of AA usage shows that 71% of the telescope rotations
are done with |AA| < 1�. Even though SAA and AA values spread
over the full range allowed, the field-to-field variations (between
consecutive observations) of SAA and AA are very small through-
out the survey: smaller than 1� in 97.4% (SAA) and 98.6% (AA)
of the field-to-field transitions over the full mission. This feature is
extremely important for the thermal stability, which ensures a sta-
ble PSF for WL shape measurements. It was possible to achieve
this performance thanks to the implementation of the di↵usion
algorithm described in Sect. 7.5.2.

8.2. Unallocated time

The existence of a deficit of area on some longitudes (see
Sect. 5.2.1), compared to the available observing time, is evi-

dent from Fig. 48. The blue curve is the area available in the
RoI at a given ecliptic longitude (in bins of 1�). The RoI areas in
longitudes separated by 180� are added, since that pair of longi-
tudes can be observed at the same time, from the trailing or the
leading direction. Due to this six-month periodicity, the x-axis
range only extends to 180�. The red curve denotes the cumu-
lated number of days during which a given longitude is visible
for EWS observations, assuming transit observations, and con-
verted to equivalent area (1 day corresponding to 10 deg2). The
available time is not uniform, it is determined after the stage-1
schedule is defined (see Sect. 6.3), which creates a strong varia-
tion along the year (i.e. wiggles in the red curve). For example,
the absolute minimum corresponds to the highly booked longi-
tudes of the EDFF and EDFS, where less time is left for EWS
observations.

In longitudes where the red curve is above the blue curve,
there is a deficit of area for the time available for EWS, leading
to unallocated time. Conversely, in longitudes where the blue
curve is above the red curve, there is an excess of area for the
time available for EWS, leading to unobserved areas in the RoI.
In Fig. 46 this corresponds to the areas with no patches, which
clearly are on the areas of the RoI of worst quality.

We note that the presence of unallocated time in the EWS
schedule does not mean that there will be any idle time, because
some areas of the EWS may be re-observed or new areas that do
not qualify for the EWS, but have scientific value nonetheless,
may be observed instead. In doing so, we can either consider
fields that are observable within the thermal and pointing con-
straints enforced for the EWS, or we can operate outside these
constraints, thus with the risk of perturbing the continuation of
the EWS afterwards. Therefore, one needs to have the real in-
flight characteristics to get a solid picture of the possibilities and
constraints.

A112, page 35 of 41
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Euclid Mission (Dark Energy, Dark Matter and billions of galaxies: 
satellite launched July 1st 2023 

Cost ~1.5 G�, ~150 Science Institutes, ~1500 scientists
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Euclid Mission: wide survey started in 2024, end 2030 
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~ 1/3 of the sky at resolution 0.1”/pix
~ 6E6 large images from two instruments

Several billions objects to study 
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Quantum entanglement

Einstein-[Podolski]-Rosen

Bell inequalities

Non locality
Hybrid algorithms

Superposition
Probability

Food for thought
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Quantum computing is..

NOT a general purpose super duper computer

Undergoing FAST hardware evolution 
(but bottlenecks, errors)

In principle allows a QUANTUM LEAP  in selected 
problems (optimisation, factorisation etc etc)

For the time being is FUN!
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Cosmological numerical simulations  
(Schroedinger -Poisson & Vlasov-Poisson 
equation) with Quantum Computers

Schroedinger-Poisson:

Nonlocal quantum pressure:

Becomes Euler-Poisson  
when m tends to infinity

● One dimensional 
● Following an idea by Mocz & Szasz, 2021, ApJ, 

910, 29 
● Variational algorithm completely rewritten

Luca Cappelli won the PhD position at Trieste University
IBM Zurich collaborates with the PhD project

WP1
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WP1Research lines for WP1
Quantum Technicality

Physics
● Application: fuzzy dark matter 
● Comparison of Schroedinger-Poisson 

with Vlasov-Poisson when the field mass 
m varies 

● Study the possibility to use SP as a proxy 
for VP, m acting as the softening in a N-
body simulation 

● Study if a similar variational algorithm 
can be applied to hydrodynamics

● Study scaling properties of the QC algorithm 
● Reduce circuit depth of the variational 

algorithm 
● Implement the algorithm on a real quantum 

device 
● Study the feasibility of 3D simulations 
● Study the quantum advantage when m is 

large

One-dimensional VP simulation. Left panel: 
phase space, v vs x. Right panel: density vs x 

WP1
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WP1

Collisionless dark matter
Vlasov - Poisson equation
hard to solve numerically
N - body simulations
Schroedinger equation
goes to VP for m to infinity

Schroedinger vs 
Vlasov - Poisson

VARIATIONAL ALGORITHM FOR SOLVING SCHROEDINGER EQUATION
 

CAPPELLI ET AL., 2024,  PHYSICAL REVIEW RESEARCH, 6, 013282

Hybrid - Quantum Variational Algorithm
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s input models from a set S and m conditions defining a cost function to be minimised or maximised 

examples: 

— maximise a cosmological likelihood 

— minimise the chisq of a lens model 

— choose the specifics maximizing FoM 

Quantum Approximation Optimization Algorithm 
Quantum Annealing
Quantum Evolutionary Algorithm 

Combinatorial Optimisation Problems 
OPTIMISATION PROBLEMS 

Baccigalupi, Lattanzi, La Casa
Euclid CMBXC WP6

WP2



GRAVITATIONAL LENSING

Gravitational lensing: mass-energy 
curving space time.

⃗α ( ⃗θ) ∝ ∇∫ Φ( ⃗θ, z)dz

Deflection angle

Gravitational potential

Consequences: 

➤ Multiple images (strong 
lensing — SL) 

➤ Distortions: 
gravitational arcs 
(SL), induced 
ellipticities (WL) 

➤ Magnifications 

All these effects can be used to 
recover the mass distribution 
of the lens (dark matter, gas, 
stars)

WP2



AS10

MACSJ12 MACSJ04

WP 2WP2



EXAMPLE: SL MODEL OPTIMISATION

Cluster diffuse Galaxies ➜ sub- Hot 

+ +
Chandra 

Total gravitational potential is the sum of each 
component:

ϕtot( ⃗ξ) =
Nh

∑
i=1

ϕhalo
i ( ⃗ξhalo) +

Ngal

∑
k=1

ϕgal
k ( ⃗ξgal) + ϕshear( ⃗ξshear) + ϕgas

Each mass component is parametrised:
Pseudo (non-singular) Isothermal Ellipsoids:   
ρPIEMD(r) =

σ0

2πG(1 + r2 /r2
core)

 Truncated-Isothermal Spheres: 
ρsub−halo(r) =

ρ0

(1 + r2 /r2
core)(1 + r2 /r2

cut)

Model optimisation

WP2
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GRB detection localization in AGILE/GRID data
● We developed a new method for detecting and localizing GRB in the 

AGILE/GRID sky maps as a reaction to external science alerts. 
● The science alerts can have error regions with different sizes 

depending on the instruments that detected the transient event. For 
this reason, we trained this method to detect GRBs in the AGILE sky 
maps located in a radius of 20 degrees from the map center; this 
radius is larger than 99.5 % of the error region present in the GRBWeb 
catalog.  

● The method comprises two Deep Learning models implemented with 
two Convolutional Neural Networks. The first model detects if the sky 
map contains a GRB, and the second model localizes the GRB in the 
sky maps filtered from the first model.  

● We trained and tested the models using simulated sky maps and 
GRBs. The detection model achieves an accuracy of 95.7 %, and the 
localization model has a mean error lower than 0.8 degrees. 

Anomaly detection for GRB search in light curves
This method performs source detection with a statistical 
gaussian significance ≥ 5σ. 
●No assumptions on the source position. 
●No assumptions on the source γ-rays emission / background 
models. 

Details: 
●the input data is composed by multivariate time series. 
●the chosen anomaly detection techniques is based on deep 
learning (CNN/RNN autoencoders). 
●the AE is trained offline with normal samples only (semi-
supervised approach) and it learns to reconstruct the input, 
minimizing the reconstruction error. 
●Then, the AE is fed with online data: 

○ the reconstruction error for anomalous time series 
will be higher; 

○ a threshold guides the classification.

WP3
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Quantum 
Convolutional

Neural 
Network

QUANTUM CIRCUIT

parameterized in Qiskit

QUANTUM ENCODING

data reuploading method

OPTIMIZATION

performed using the COBYLA optimizer

LOSS FUNCTION

binary cross entropy

WP3
Quantum Convolutional Neural Network
for GRB detection in CTA data 

Classical Data

GRB lightcurves vs noise
250 time series for training
150 time series for testing
data mimicking CTA data
see Farsian, F. et al. (in prep)
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Results: 1st implementation (smaller number of parameters in QCNN)

Results: 2nd implementation (only 20 light curves in the training sample)

Quantum Autoencoders for
GRB detection in AGILE 

classical convolutional autoencoder
convolutional variational autoencoder
encoders composed of 1D convolutions
decoders composed of 1D transpose convolutions
works on simulated data and ready to be tested on AGILE ones

Classical Algorithm

quantum encoder + classical latent space + classical decoder
quantum encoder + quantum latent space + classical decoder
data reuploading and amplitude embedding as encoding techniques
8 qubits and 16 qubits 
interesting preliminary results but work still in progress (A. Rizzo, et al. in prep)

Quantum AlgorithmFrom 1E5 parameters 
—> 51 parameters!!
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CMB maps as sum of different contributions
cosmological signal (anisotropy power spectrum)
galactic foregrounds (e.g., synchroton and thermal dust)
Cosmic Infrared Background)
extragalactic radio and far IR sources

difficult to separate and time consuming

WP4
CMB components separation

different spectral features
already available methods, e.g.

template fitting
internal linear combination
PCA decomposition

develop quantum counterparts of classical methods
use Quantum Machine Learning techniques

Research Plan
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WP2
Multiparameter Optimisation

Constraining a small set of
cosmological parameters in
a sea of nuisance ones

COSMOLOGY

Constraining halo dark
matter profile marginalising
over single galaxies ones 

STRONG LENSING

Reconstructing the
posterior density in many
dimensional spaces

SAMPLING

Quantum 
Genetic
Algorithm

FITNESS EVALUATION

quantify the agreement between model and data

QUANTUM ENCODING

encode model DNA through amplitude encoding

QUANTUM CROSSOVER AND MUTATION

use quantum operations for genetic operations

QUANTUM DECODING

decoding back to classical algorithm and iterate

FINDING BEST FIT
COSMOLOGICAL
PARAMETERS FROM THE
FIT TO SNEIA, BAO AND
CMB DATA 

SEE G. SARRACINO
POSTER FOR FURTHER
DETAILS

First 
tests
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Quantum Genetic Algorithm Circuit

Find best 
 and  

from SN 
and CMB

Ω0 H0

For our computations, we have used the DAME machine at
the Osservatorio Astronomico di Capodimonte, Naples. This
is made up of 1 CPU, model intel(R) Core(TM) i9-10980XE
CPU @ 3.00GHz. Each CPU has 18 cores and 2 threads per
core. The RAM of the hardware is 128 GBs. For our pur-
poses and analyses, we have used up to 8 cores, usually di-
vided for di↵erent runs. A single run of our genetic algorithm
with 4 CPUs, number of generation=50, number of individu-
als inside the population=16, number of iteractions=300 takes
around 3900 seconds and uses below 1 GB of RAM during its
run. This computational time scales linearly with generations,
individuals, and interations. As previously mentioned, the most
time-consuming part of our algorithm is the evaluation of the
merit function, followed by the simulations of the quantum cir-
cuit in the measurement phase.

We start with Fig. 8, where, in the upper panel, we show the
outcome for one of our computations involving SNe Ia, while
on the lower panel we show an example for BAO+CMB. In
both cases, we have set quantum crossover and mutation prob-
abilities to 0.5, which corresponds to one of the points with the
highest precision on the results, as we will show. We note how
the results are consistent with the maps of the objective function
shown in Fig. 4 for both cases. Indeed, the mean and the stan-
dard deviations of the 300 iterations for the quantum genetic
algorithm are 0.353 ± 0.017 for ⌦M and 72.96 ± 0.21 for H0
for SNe Ia, and 0.324 ± 0.015 for ⌦M and 66.7 ± 1.0 for H0 for
CMB+BAO. In both cases, we obtain results that are consistent
with the true minima of the objective functions within 1�.

Having proven that our algorithm is consistent with the real
cosmological objective functions, we now show the analysis re-
garding the influence of the hyperparameters of our quantum
genetic algorithm. Let us start with the dependency with the
probabilities associated with quantum crossover and mutation,
running our algorithm for di↵erent pairs of them. The results
are shown in 9. We note how for the SNe Ia the worst results
in terms of precision are at the extreme values for the hyper-
parameters, especially for crossover probability = 1. This is
consistent with what one would expect from a typical classical
genetic algorithm, in which crossover and mutation probabili-
ties are chosen to make these operations significant but do not
completely disrupt the initial population. This observation in-
dicates that our definitions of quantum crossover and mutation
have positively impacted the exploration of the parameter space
of the population, thereby enhancing the precision of the results
for appropriate values of the related probabilities. The regular
behavior of our results with the hyperparameters has enabled
us to draw contour levels depending on the standard deviation
of the results for the SNe Ia, as shown in the upper panels of
Fig. 9. The minimum value for the precision on H0 and ⌦M
has been obtained for crossover probability 0.2, and mutation
probability 0.9, but we also note that many standard deviations
are close one to the other, as we will show in the following.

Let us now discuss the results concerning the BAO+CMB
set. We note how we do not see a defined trend correlated with
the probabilities as we did for the SNe Ia. The main point in
common between the two maps is that the results are generally
worse for crossover probability= 1.0, but there is not a clear

Figure 8: Upper panel: results of the quantum genetic algorithm for the SNe
Ia, 300 iterations, Crossover Probability= 0.5, Mutation Probability 0.5. Lower
panel: the same for the BAO+CMB sets. Given the asymmetricity of the results
obtained here, we have chosen to not report the mean on the plots, because it
would not be very informative.
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Figure 11: Upper panel: the same results shown in the Upper panel of Fig. (8)
with highlighted isochrones for better comparison. Middle panel: the results for
the classical genetic algorithm, using the same hyperparameters for the popula-
tion and generation size. Lower panel: the same for the boxed random classical
algorithm.

Figure 12: The results obtained with two di↵erent tests of HQGA compared
with our algorithm. The histograms compare the distributions of ⌦M and H0
obtained by our algorithm and HQGA with 266 generations. The standard devi-
ations for ⌦M and H0 obtained for the single runs shown here for our algorithm
and HQGA with 266 generations are 0.016 and 0.015 for ⌦M , and 0.21 and
0.19 for H0, respectively.

the HQGA algorithm by running the test with Quantum elitism,
100 generations, and mutation probability 0.5 10 times, as we
did for our algorithm, finding for the errors �⌦M = 0.027±0.01
and �H0 = 0.33 ± 0.02.

The results show that the algorithms present consistent re-
sults, thus confirming the validity of our approach. We also
note how our results are more precise than the ones obtained
with HQGA when we compare the results with a smaller num-
ber of fitness evaluations, while it is comparable in its precision
when we match this number, albeit the distribution of our re-
sults shows a stronger correlation between ⌦M and H0.

All the tests we have performed with HQGA are shown
in Tab. 4.3. Here, � is the angle associated with the further
step provided by the Quantum Elitism with Reinforcement (R),
while D represents Deterministic Elitism (Acampora and Vi-
tiello, 2021). Here, we note how the results provided by Quan-
tum Elitism are the ones with smaller uncertainties on ⌦M and
H0, while the best mutation probability and � are 0.5 and ⇡/16,
respectively. Again, only the precisions are shown for ⌦M and
H0 because the results themselves are all consistent with each
other and with our algorithm within 1�. We also note from the
result obtained using 500 generations that the improvement in
the precision of the results closely resembles what we have ob-
tained in Tab. 1 from our algorithm if one compares the number
of merit evaluations (1500 here vs 1600 in the second row of
that table).

5. Conclusions

The impressive increase in the quality and quantity of
data has turned cosmology from the ”the search for two num-

16
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Quite encouraging!!

Stay tuned …


