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AGILE Gamma-Ray Burst 
Detection

• AGILE is a space mission launched from the 
Italian Space Agency (ASI) in 2007 to study X-ray 
and gamma-ray phenomena through data 
acquired by different instruments onboard the 
satellite.

• AGILE ended operations in January 2024.

• The Anti-Coincidence System (ACS) is part of 
the Gamma-Ray Imaging Detector (GRID). It is 
composed of five panels and it can detect 
photons. The ACS records each panel count rate 
in telemetry as ratemeters (RM) data, with 1.024 
seconds resolution → Each ACS panel RM count 
rate constitutes a different time series.

N. Parmiggiani et al, The AGILE real-time analysis software system to detect short-transient events in the multi-messenger era. 
Astronomy and Computing, Volume 44, 2023. 2



Gamma-Ray Bursts

• Gamma-ray bursts (GRBs) are 
energetic explosions that have 
been observed in distant 
galaxies.

• They can last from a few 
milliseconds to several minutes 
and can be hundreds of times 
brighter than an average 
supernova.

• A light curve is a time series 
representing the count rate 
detected by the ACS, plotted as 
a function of time. The number of 
photons received is shown on 
the y-axis, while time is 
displayed on the x-axis.
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The goal of this work

• Anomaly detection involves identifying data points or 
patterns that significantly deviate from the expected or normal 
behavior within a dataset. In this case, the task is to detect 
anomalies in background light curves, where such anomalies 
may indicate the occurrence of a GRB.

• Quantum approach → Quantum Autoencoder 

• Reproduce neural networks developed by AGILE team to 
compare quantum and classic machine learning algorithms.

• Final objective → Verify if a quantum model can replicate the 
results obtained by a classic machine learning model.

• Quantum machine learning can exploit properties of 
quantum mechanics such as superposition or entanglement
to process and represent data in ways that classical models 
cannot, potentially leading to more efficient algorithms for 
certain tasks. 
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• Simulated background-only light curves to detect anomalies, such as GRBs.

• Time in seconds on the x-axis → The light curve contains 128 features in total.

• Count rate on the y-axis → It represents the number of photons detected within each bin. The 
values are normalized between 0 and 1 using the Min-Max scaling algorithm on the full dataset.

Dataset
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Autoencoder
• In Deep Learning, an autoencoder is a type of neural network used to 

compress and reconstruct data, often used for tasks like data denoising 
or dimensionality reduction.

• It consists of three main parts:
• Encoder → It compresses the input data into a lower-dimensional 

representation.
• Bottleneck Layer → It holds the compressed representation of 

the input data and captures the most essential features.
• Decoder → It reconstructs the original data from its compressed 

form.

• This network is trained to minimize the difference between the original input and the reconstructed output, enabling it to detect 
anomalies when the reconstruction error significantly deviates from the expected range.

• Applications:
•  Image Compression
•  Anomaly Detection
•  Feature Extrection
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Classical Approach (1)
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• The main difference between a Vanilla Autoencoder and a Variational Autoencoder is the structure of the latent 
space. In a VAE, the latent space is continuous and probabilistic. This feature makes VAEs particularly useful for 
generative modeling, as they can generate new data points by sampling from the learned distribution in the 
latent space.

• Variational Autoencoder (VAE) → Same structure as the 
vanilla autoencoder, but includes a probabilistic representation 
of the latent space between the encoder and the decoder.

N. Parmiggiani et al, A Deep Learning Anomaly Detection Method to Identify Gamma-Ray Bursts in the Ratemeters of the AGILE Anti-coincidence System.
The Astrophysical Journal, Volume 945, Number 2, 2023.

• Vanilla Autoencoder → Composed of 1D Convolutional layers 
for the encoder and 1D Transposed Convolutional layers for the 
decoder.



8

Classical Approach (2) – Reconstructed Lightcurves

• On the left, a reconstructed light curve from the test set using the vanilla autoencoder.
• On the right, the same light curve but reconstructed by the variational autoencoder.

• The vanilla autoencoder might perform better because it is focused on minimizing the 
reconstruction error, enabling it to learn a more precise mapping for the reconstruction task.
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Classical Approach (3) – Model’s parameters

• To compare the classical approach with the quantum model, we gradually reduced the number 
of parameters in the classical network until it could no longer perform the reconstruction task 
effectively. This approach was taken to reflect the parameter limitations inherent in the 
quantum models due to computational constraints.
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Quantum Approach (1)

Romero J., et al. Quantum Autoencoder for Efficient Compression of Quantum Data. Quantum Science and Technology, Volume 2, Number 4, 2017.
T. Hur, et al. Quantum convolutional neural network for classical data classification. Quantum Machine Intelligence, Volume 4, 2022.

• The aim of this work is to replicate the results achieved 
with classical methods using quantum deep learning 
networks.

• We utilized two different frameworks, IBM's Qiskit and 
Xanadu's PennyLane, to design and simulate various 
quantum circuits.

• For encoding classical data into quantum states, we 
employed two techniques: data re-uploading and 
amplitude embedding.

• We implemented both a standard quantum autoencoder 
and a quantum convolutional autoencoder to explore the 
potential of quantum architectures in this context.
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Quantum Approach (2)

• The quantum autoencoder is composed of three 
layers:
• Input layer
• Bottleneck layer
• Output layer

• Parametrized quantum circuit for the training 
process.

• As loss function, we used the fidelity score between 
the input state and the output state.
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Quantum Approach (3) - Results

• The loss function used to train the autoencoder is 
the fidelity score between the trash state and the 
reference state.

• While we achieved a good fidelity score for some 
states in the test set, the output quantum state 
showed significant deviations from the input 
quantum state for several other cases.
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Quantum Approach (4) - Results

• Using PennyLane we tested a Quantum Convolutional 
Autoencoder followed by three layers of 1D Transposed 
Convolutions, therefore leading to a Hybrid Quantum-
Classical Convolutional Neural Network.

• The obtained results, as seen in the distribution of 
reconstruction errors on the test set, were not very 
satisfactory.
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Quantum Approach (5) – Results & Comparisons

• This table shows the results obtained from the different approaches presented, comparing 
those achieved by the quantum models with those of the classical and hybrid models.

• The reconstruction error is measured on the test set using the Mean Squared Error 
between the original and the reconstructed lightcurves.
Approach Framework Model Parameters Reconstruction 

Error (Test Set)
Qubits

Classical Keras & Tensorflow Vanilla Autoencoder > 2M 1.5e-4 //

Variational Autoencoder > 2M 1.4e-3

Smaller Autoencoder 705 1.1e-2

Hybrid PennyLane & Keras Quantum Convolutional 
Autoencoder + 1D 
Transposed 
Convolutions

51 (quantum) 
+ 140K 
(classical)

6.47e-2 8

Fully 
Quantum

Qiskit Quantum Autoencoder 42 6.53e-3 7

Smaller Quantum 
Autoencoder

18 8.82e-3 3
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Conclusion & Future Work

• The quantum autoencoder implementation fails to reconstruct the light curves properly and, 
therefore, does not perform well in this anomaly detection task.

      Possible reasons for this include:
• Encoding error: Embedding large, high-dimensional classical data into a quantum state can 

lead to loss of information or inaccuracies.
• Noisy Encoding: Quantum data encoding is sensitive to noise, which is problematic in 

current Noisy Intermediate-Scale Quantum (NISQ) devices → Fault Tolerance, errors 
caused by factors such as decoherence, gate errors and measurement errors can 
significantly affect quantum autoencoders → This is crucial because even minor errors during 
encoding, processing or decoding can lead to significant deviations in the reconstructed 
output.

• However, it is worth noting that as the number of parameters in the classical model is reduced, 
the quantum model tends to achieve better reconstruction errors on the test set, effectively 
leveraging quantum mechanical properties such as entanglement and superposition.

• Try implementing more sophisticated variational quantum circuits by experimenting with 
different circuit designs and using more qubits.
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Thanks for your attention
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