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GAMMA RAY BURSTS
▸ Gamma-ray bursts (GRBs) are extremely energetic explosions that occur in distant 

galaxies, emitting intense bursts of gamma rays, the most energetic form of light. 

▸ They are typically classified into two types: short-duration GRBs, lasting less than 2 
seconds, likely caused by the merger of neutron stars, and long-duration GRBs, lasting 
over 2 seconds, usually associated with the collapse of massive stars into black holes. 

▸ GRBs are among the brightest and most powerful events in the universe, often 
followed by an afterglow that can be observed in other wavelengths like X-rays, visible 
light, and radio waves.



CHERENKOV TELESCOPES ARRAY (CTA)
▸ The Cherenkov Telescope Array Observatory (CTAO) will be the world's most 

powerful ground-based observatory for very high-energy gamma-ray astronomy. 
The facility will be equipped with real-time analysis software that automatically 
generates science alerts and analyzes ongoing observational data in real-time.



PROJECT’S MOTIVATION
▸ The need of automation and real-time analysis for GRB data 

▸ There are classical model (Convolutional Neural Network), 
but heavy architecture with many parameters  

▸ Comparison of QNN with classical NN and Increasing the 
performance, in terms of time and complexity of the model

N. Parmiggiani, et al. A Deep Learning Method for AGILE-GRID Gamma-Ray Burst Detection.  
The Astrophysical Journal, Volume 914, Number 1, 2021.



SETTING THE STAGE FOR QUANTUM MACHINE LEARNING
▸ Qubit : The unit of information for QC 

▸ Measurement: an operation that alters 
the system and is a non-deterministic 
process (unlike classical computation).  

▸ The basis of Quantum computing:  
Superposition: the state with no-null 
probability of being in both the state |0⟩ 
and |1⟩.  
Entangelment: the correlation of two 
qubits.  

▸ Quantum gate: transformations (matrices) 
which can be used to manipulate the 
qubits. They should have these properties: 
Linearity, Unitarity and Reversibility

Superposition

Bell state



QUANTUM MACHINE LEARNING (QML)
▸ Combines concepts from quantum 

computing and machine learning to 
develop algorithms capable of 
exploiting quantum phenomena to 
enhance learning tasks.  

▸ Quantum computing uses qubits, which 
unlike classical bits, can be in 
superposition states of 0 and 1 
simultaneously. This allows to perform 
multiple computations simultaneously, 
potentially leading to exponential 
speedups for certain problems. 

▸ QML faces challenges like fault-tolerant 
hardware, efficient algorithms, and 
integrating quantum with classical 
systems.



DATA ENCODING METHODS

For encoding (embedding), we take a classical data point, x, and encode 
it by applying a set of gate parameters in the quantum circuit. 
There are different types of encoding the data: 

‣ Basic encoding  

‣ Angle encoding 

‣ Amplitude encoding 

‣ Data Reuploading 

‣ QuAM (Quantum Associated Memory) 

‣ QRAM (Quantum Random Access Memory) 

‣ …



PARAMETRISED QUANTUM CIRCUIT (PQC)

▸ Preparation of a fixed initial state (e.g., the 
vacuum state or the zero state). 

▸ A quantum circuit , parameterized by a set 
of free parameters  

▸ Measurement of an observable  at the output. 

trained by a classical optimization algorithm, by 
querying to the quantum device.

U(θ)
θ

B̂

Parameterized quantum circuits (PQC) bridge quantum and classical 
computing: the quantum computer estimates a quantity, while the 
classical computer optimizes the parameters. This process iterates, 
continually refining the quantum state. 

They consist of three ingredients:



WHICH PLATFORM TO USE 

▸ Qiskit is an open-source quantum 
computing software development 
framework created by IBM 

▸ Provides a way to interact with 
quantum computers through a high-
level programming language 

▸ Offers a comprehensive set of tools 
and libraries, including simulators for 
testing quantum algorithms, access to 
real quantum hardware, and a variety 
of algorithms and techniques for 
quantum information processing. 

▸ IBM offers access to Superconducting 
qubit devices

https://qiskit.org/ 
https://quantum-computing.ibm.com/ 

https://qiskit.org/
https://quantum-computing.ibm.com/


DATASET
▸ Simulated Dataset are composed by two classes: GRB Signal and 

background noise, leading to a binary classification problem  

▸ Light Curve as time series: 450 GRBs and background noise as training set, 
150 for the test set.  

▸ The x-axis represents the time window with a certain Binnig. 

▸ The y-axis represents the count rate of photons detected by ACS over time. 
The presence of high and structured spikes can be used to detect GRBs.
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IMPLEMENTED ARCHITECTURE

▸ Parametrised Quantum 
Circuit in Qiskit has been 
used 

▸ Using Angle Encoding and 
data Reuploading methods 
for Data Encoding 

▸ COBYLA optimizer 

▸ Binary cross entropy as 
loss function

Feature map



BENCHMARKING PARAMETERS
Variable Physical Parameters 
related to the signal and 
background noise to check the 
performance of the Model: 

LC length  

Binning 

Offset for the event 

Model of the GRB 

Normalization factor of the GRB 

Decay time scale ( in case of 
exponential)

Parameters related QCNN 
architecture and its 
performance in the case of 
binary classification: 

Number of Qubits 

Number of data 
reuploading layers 

Data encoding type 

Training dataset size 

Training Epochs



RESULTS
▸ Model performance in case of 450 light curves training set and 150 for the test set  

▸ By increasing the number of Qubits the accuracy increases but with the price of 
increasing of training time 

▸ Decreasing the number of Qubits less than a threshold causes model doesn’t get 
the substructure of the data 

▸ Classical CNN is a simple network composed of 2 Conv1D and a pooling layer

NN model Num of Qubits Num of 
parameters

Accuracy on 
Train set

Accuracy on 
Test set

Time

Classical CNN - 56 99.7% 97.35% 21s

Fully 
Quantum

6 12 90.3% 87.7% 89s

Fully 
Quantum

12 24 99.38% 97.5% 713s

Fully 
Quantum

4 8 Doesn’t learn - -

F.Farsian et al, 2024 in prep



▸ Model performance in case of only 20 light curves for training set and 180 for 
the test set 

▸ The model reaches very high accuracy after a short time 

▸ The classical CNN cannot detect the GRB signal due to few training data 

▸ The other parameters are fixed, the best value is chosen: 
Binnig= 50s (LC length= 24), Normalization= [0.1, 1], Offset fixed= randomly 
changing in range of [50, 1150]s, Model of GRB= ExpDecayTemporalModel

NN model Num of Qubits Num of 
parameters

Accuracy on 
Train set

Accuracy on 
Test set

Time

Classical CNN - 56 55% 52.22% 91s

Fully Quantum 6 24 95% 98.33% 23s

RESULTS

F.Farsian et al, 2024 in prep



PERVIOUS WORK OF OUR GROUP

arXiv:2404.14133 , proceedings of the ADASS XXXIII (2023) conference

https://arxiv.org/abs/2404.14133


One of the first implemented Quantum Convolutional Neural Network 
(QCNN) to analyze astrophysical data, specifically to detect the GRB signal. 

More than 50 types of architecture and different data encoding has been 
tested 

The performance of QCNN in terms of accuracy is equal or better than the 
classical CNN in a specific case. 

Reduction in parameters of the model underlines the efficiency and power 
of QML algorithms.  

Generalization power of QML in case of very few training dataset and its 
advantage respect to classical ML. In this case we have only 20 light curves 
as the training set 

In this study we reach Quantum Advantage in terms of sample complexity. 

CONCLUSION
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POTENTIAL OF QML AND QC IN ASTROPHYSICS AND COSMOLOGY

▸ Algorithm optimization (Quantum Monte Carlo, Quantum Particle 
Swarm Optimization) for parameter estimation 

▸ Cosmological numerical simulations (quantum algorithms to solve 
better equations such Vlasov-Poisson to Schrodinger-Poisson) 

▸ Data Analysis and Pattern Recognition (using Quantum Convolutional 
Neural Network, quantum Variational AutoEncoder) 

▸ Optimizing gravitational wave detection (by improving the sensitivity 
of detectors and reducing noise) 

▸ …



BASIC ENCODING

▸ This encoding represents real 
numbers as binary numbers and then 
transforms them into a quantum state 
on a computational basis. 

▸ Is not efficient in terms of the 
required number of qubits but is 
good for arithmetic operation.



ANGLE ENCODING

▸ The n classical features are 
encoded into the rotation 
angle of the n qubit. 

▸ It requires n qubits to 
represent n-dimensional data 
but is cheaper to prepare in 
complexity: it requires one 
rotation on each qubit.



AMPLITUDE ENCODING

▸ The data is encoded into the 
amplitudes of a quantum state. 

▸ This encoding requires log2 
(n) qubits to represent an n-
dimensional data point.



DATA REUPLOADING
▸ Data re-uploading addresses the limitations imposed by the no-

cloning theorem. 

▸ It adds extra layers or repetitions of quantum gates within a 
variational quantum circuit, enabling more complex transformations 
of the quantum state. 

▸ This method enhances the circuit's expressiveness, improving its 
ability to capture intricate patterns in data for machine learning tasks.



AGILE SPACE MISSION
▸ AGILE is a space mission launched from the Italian Space Agency (ASI) in 2007 to 

study X-ray and gamma-ray phenomena through data acquired by different 
instruments onboard the satellite.  

▸ The AntiCoincidence System (ACS) is part of the Gamma-Ray Imaging Detector 
(GRID). It is composed of five panels and it can detect photons. Each ACS panel 
count rate constitutes a time series.  

▸ The AGILE-GRID RTA pipeline generates count maps, exposure maps and upper 
limit maps. 


