# Understanding the origin of the golden mass across cosmic history



#### Crescenzo Tortora

INAF - OACN









## General framework and golden mass







#### The state of the art of galaxy formation and evolution











#### The state of the art of galaxy formation and evolution



**Crescenzo Tortora** 

INAF-OACN

• INAF Binthonecast Managenerative



#### **SB**<sub>e</sub> and **R**<sub>e</sub> vs luminosity



#### **Colour and stellar population gradients**









#### **Colour and stellar population gradients**



#### **Central DM fraction and total mass density slope**





Colour and stellar population gradients vs M.

#### Mass density slope vs M<sub>\*</sub>









**Crescenzo Tortora** 







It is natural to expect that there is a causality between physical processes and emergence of the golden mass









It is natural to expect that there is a causality between physical processes and emergence of the golden mass

**Questions arise** 

What physical processes contribute to the formation scenarios?

Under what physical conditions are galaxies formed?

**INAF-OACN** 

How does galaxy mass assemble?

What is the origin of the golden mass?





It is natural to expect that there is a causality between physical processes and emergence of the golden mass

**Questions** arise

What physical processes contribute to the formation scenarios?

Under what physical conditions are galaxies formed?

How does galaxy mass assemble?

What is the origin of the golden mass?

Galaxies across a wide mass and redshift range (with unresolved and resolved data) are needed!





# Analyzing the golden mass through simulations

INAF-OACN





SHAR meeting, 01/10/2024

**CASCO:** Cosmological and AStrophysical parameters from Cosmological simulations and Observations

CAMELS, DREAMS, TNG, etc.

Busillo et al. 2023, Busillo et al. 2024, submitted to A&A, Tortora et al. 2024 in prep.

**Crescenzo Tortora** 



**CASCO:** Cosmological and AStrophysical parameters from Cosmological simulations and Observations

CAMELS, DREAMS, TNG, etc.



#### **CAMELS** simulations

Several thousand cosmological simulations, using different subgrid models, mass resolution, volume, and variations in astrophysical (SN and AGN feedback) and cosmological parameters (Villaescusa-Navarro et al. 2021, ....).

Busillo et al. 2023, Busillo et al. 2024, submitted to A&A, Tortora et al. 2024 in prep.

**Crescenzo Tortora** 



**CASCO:** Cosmological and AStrophysical parameters from Cosmological simulations and Observations

CAMELS, DREAMS, TNG, etc.



Busillo et al. 2023, Busillo et al. 2024, submitted to A&A, Tortora et al. 2024 in prep.

**Crescenzo Tortora** 



**CASCO:** Cosmological and AStrophysical parameters from Cosmological simulations and Observations



CAMELS, DREAMS, TNG, etc.

**INAF-OACN** 

INAF BILITEPART



Busillo et al. 2023, Busillo et al. 2024, submitted to A&A, Tortora et al. 2024 in prep.

**Crescenzo Tortora** 

#### The golden mass in CAMELS simulations





#### The golden mass in CAMELS simulations





### What about (new) observations?







## Data in the next 5 years



#### **Euclid and Rubin**



Billions of galaxies with integrated and 'resolved' photometry at z < 3 (10-100,000 in the local universe):

- Colours, stellar populations, stellar masses;
- Colour and stellar populations gradients;
- Structural parameters;
- Spec. Follow-up using GC populations for dynamical analysis;
- etc.









#### **Euclid and Rubin**



Billions of galaxies with integrated and 'resolved' photometry at z < 3 (10-100,000 in the local universe):

- **Colours, stellar populations, stellar masses;**
- Colour and stellar populations gradients;
- Structural parameters;
- Spec. Follow-up using GC populations for dynamical analysis;
- etc.
- ~100,000 strong lenses (5-10,000 with dynamics) up to z=2:
- mass,
- dark matter fraction,
- total and DM mass profiles,
- Initial Mass function,
- etc.



**Crescenzo Tortora** 





#### **Euclid and Rubin**

#### + (StePS)-WEAVE and 4MOST

Precise velocity dispersions and stellar population parameters at z < 1



## Billions of galaxies with integrated and 'resolved' photometry at z < 3 (10-100,000 in the local universe):

- **Colours, stellar populations, stellar masses;**
- Colour and stellar populations gradients;
- Structural parameters;
- Spec. Follow-up using GC populations for dynamical analysis;
- etc.
- ~100,000 strong lenses (5-10,000 with dynamics) up to z=2:
- mass,
- dark matter fraction,
- total and DM mass profiles,
- Initial Mass function,
- etc.



**Crescenzo Tortora** 





### Data in the next 10 years

#### with ELT and SHARP?

**Crescenzo Tortora** 









#### NEXUS VESPER

## Scaling relations of integrated quantities

#### Scaling relations of 'spatiallyresolved' quantities

**Crescenzo Tortora** 







| Specifics | Motivations/Comments | NEXUS | VESPER |
|-----------|----------------------|-------|--------|
|           |                      |       |        |







| Specifics         | Motivations/Comments                                       | NEXUS   | VESPER |
|-------------------|------------------------------------------------------------|---------|--------|
| Redshift coverage | <i>Most optical abs. lines in<br/>(down to Ca H&amp;K)</i> | z > 1.5 | z > 2  |



**INAF-OACN** 

INAF INAF Internet Internet Internet

**Crescenzo Tortora** 

| Specifics         | Motivations/Comments                                       | NEXUS     | VESPER |
|-------------------|------------------------------------------------------------|-----------|--------|
| Redshift coverage | <i>Most optical abs. lines in<br/>(down to Ca H&amp;K)</i> | z > 1.5   | z > 2  |
| Spec. resolution  | Recovering st. pop. and $\sigma$                           | 2000/6000 | 3000   |

**Crescenzo Tortora** 







| Specifics         | Motivations/Comments                                       | NEXUS                                                   | VESPER                                                   |
|-------------------|------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------|
| Redshift coverage | <i>Most optical abs. lines in<br/>(down to Ca H&amp;K)</i> | z > 1.5                                                 | z > 2                                                    |
| Spec. resolution  | Recovering st. pop. and $\sigma$                           | 2000/6000                                               | 3000                                                     |
| FOV               | <i>Observe enough galaxies<br/>in a single pointing</i>    | ~30 galaxies in<br>72″×72″<br>~0.6×0.6 Mpc <sup>2</sup> | ~12 galaxies in<br>24"×72"<br>~0.25×0.6 Mpc <sup>2</sup> |







| Specifics          | Motivations/Comments                                       | NEXUS                                                   | VESPER                                                             |
|--------------------|------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------------|
| Redshift coverage  | <i>Most optical abs. lines in<br/>(down to Ca H&amp;K)</i> | z > 1.5                                                 | z > 2                                                              |
| Spec. resolution   | Recovering st. pop. and $\sigma$                           | 2000/6000                                               | 3000                                                               |
| FOV                | <i>Observe enough galaxies<br/>in a single pointing</i>    | ~30 galaxies in<br>72″×72″<br>~0.6×0.6 Mpc <sup>2</sup> | ~12 galaxies in<br>24"×72"<br>~0.25×0.6 Mpc <sup>2</sup>           |
| Spatial resolution | <i>R<sub>e</sub> = 0.5-1 kpc is around<br/>0.1″</i>        | Half of the light in the slit width of 0.2"             | Within the FOV of 1.7 × 1.5", we can map the spectra up to some Re |





| Specifics             | Motivations/Comments                                       | NEXUS                                                                                                       | VESPER                                                                                                                                              |
|-----------------------|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Redshift coverage     | <i>Most optical abs. lines in<br/>(down to Ca H&amp;K)</i> | z > 1.5                                                                                                     | z > 2                                                                                                                                               |
| Spec. resolution      | Recovering st. pop. and $\sigma$                           | 2000/6000                                                                                                   | 3000                                                                                                                                                |
| FOV                   | <i>Observe enough galaxies<br/>in a single pointing</i>    | ~30 galaxies in<br>72"×72"<br>~0.6×0.6 Mpc <sup>2</sup>                                                     | ~12 galaxies in<br>24"×72"<br>~0.25×0.6 Mpc <sup>2</sup>                                                                                            |
| Spatial resolution    | <i>R<sub>e</sub> = 0.5-1 kpc is around<br/>0.1″</i>        | Half of the light in the slit width of 0.2"                                                                 | Within the FOV of $1.7 \times 1.5^{\prime\prime}$ , we can map the spectra up to some Re                                                            |
| Pix. Scale - PSF FWHM | Important for VESPER                                       | 0.035″/pix – 0.012″                                                                                         | 0.031″/sp – 0.012″<br>(R <sub>e</sub> ~ 3 × spaxel size)                                                                                            |
| S/N and exp. time     | R=2000 (NEXUS) or 3000<br>(VESPER), exp. time: 1h          | Width=200 mas<br>S/N = 20-100 (K=20, K <sub>Re</sub> = 20.75)<br>S/N = 5-30 (K=22, K <sub>Re</sub> = 22.75) | Diameter=200mas (K = 20)<br>S/N = 20-100 (μ <sub>K</sub> (Re)=18)<br>S/N = 5-25 (μ <sub>K</sub> (2Re)=19.7)<br>S/N=1-8 (μ <sub>K</sub> (3Re)=20.95) |









| Specifics             | Motivations/Comments                                       | NEXUS                                                                                                       | VESPER                                                                                                                                  |
|-----------------------|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Redshift coverage     | <i>Most optical abs. lines in<br/>(down to Ca H&amp;K)</i> | z > 1.5                                                                                                     | z > 2                                                                                                                                   |
| Spec. resolution      | Recovering st. pop. and $\sigma$                           | 2000/6000                                                                                                   | 3000                                                                                                                                    |
| FOV                   | <i>Observe enough galaxies<br/>in a single pointing</i>    | ~30 galaxies in<br>72"×72"<br>~0.6×0.6 Mpc <sup>2</sup>                                                     | ~12 galaxies in<br>24"×72"<br>~0.25×0.6 Mpc <sup>2</sup>                                                                                |
| Spatial resolution    | <i>R<sub>e</sub> = 0.5-1 kpc is around<br/>0.1″</i>        | Half of the light in the slit width of 0.2"                                                                 | Within the FOV of $1.7 \times 1.5^{\prime\prime}$ , we can map the spectra up to some Re                                                |
| Pix. Scale - PSF FWHM | Important for VESPER                                       | 0.035″/pix – 0.012″                                                                                         | 0.031"/sp – 0.012"<br>(R <sub>e</sub> ~ 3 × spaxel size)                                                                                |
| S/N and exp. time     | R=2000 (NEXUS) or 3000<br>(VESPER), exp. time: 1h          | Width=200 mas<br>S/N = 20-100 (K=20, K <sub>Re</sub> = 20.75)<br>S/N = 5-30 (K=22, K <sub>Re</sub> = 22.75) | Diameter=200mas (K = 20)<br>S/N = 20-100 ( $\mu_{K}$ (Re)=18)<br>S/N = 5-25 ( $\mu_{K}$ (2Re)=19.7)<br>S/N=1-8 ( $\mu_{K}$ (3Re)=20.95) |
| Observables           | -                                                          | Integrated st. pop. and $\sigma$                                                                            | St. pop. gradients and $\sigma$ profile                                                                                                 |

**Crescenzo Tortora** 





| Specifics                   | Motivations/Comments                                       | NEXUS                                                                                                       | VESPER                                                                                                                                              |
|-----------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Redshift coverage           | <i>Most optical abs. lines in<br/>(down to Ca H&amp;K)</i> | z > 1.5                                                                                                     | z > 2                                                                                                                                               |
| Spec. resolution            | Recovering st. pop. and $\sigma$                           | 2000/6000                                                                                                   | 3000                                                                                                                                                |
| FOV                         | <i>Observe enough galaxies<br/>in a single pointing</i>    | ~30 galaxies in<br>72″×72″<br>~0.6×0.6 Mpc²                                                                 | ~12 galaxies in<br>24″×72″<br>~0.25×0.6 Mpc <sup>2</sup>                                                                                            |
| Spatial resolution          | <i>R<sub>e</sub> = 0.5-1 kpc is around<br/>0.1″</i>        | Half of the light in the slit width of 0.2"                                                                 | Within the FOV of 1.7 × 1.5", we can map the spectra up to some Re                                                                                  |
| Pix. Scale - PSF FWHM       | Important for VESPER                                       | 0.035″/pix – 0.012″                                                                                         | 0.031″/sp – 0.012″<br>(R <sub>e</sub> ~ 3 × spaxel size)                                                                                            |
| S/N and exp. time           | R=2000 (NEXUS) or 3000<br>(VESPER), exp. time: 1h          | Width=200 mas<br>S/N = 20-100 (K=20, K <sub>Re</sub> = 20.75)<br>S/N = 5-30 (K=22, K <sub>Re</sub> = 22.75) | Diameter=200mas (K = 20)<br>S/N = 20-100 (μ <sub>K</sub> (Re)=18)<br>S/N = 5-25 (μ <sub>K</sub> (2Re)=19.7)<br>S/N=1-8 (μ <sub>K</sub> (3Re)=20.95) |
| Observables                 | -                                                          | Integrated st. pop. and $\sigma$                                                                            | St. pop. gradients and $\sigma$ profile                                                                                                             |
|                             | Exp. Time of<br>100 hours                                  | <b>3000 galaxies</b>                                                                                        | 1200 galaxies                                                                                                                                       |
| Crescenzo Tortora INAF-OACN |                                                            |                                                                                                             | 니 <b>人</b> 국 <b>戸 meeting, 01/10/2024</b>                                                                                                           |

| Specifics      | Motivations/Comments | NEXUS                                                               | VESPER                                                                                       |
|----------------|----------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
|                |                      |                                                                     |                                                                                              |
| Observables    |                      |                                                                     |                                                                                              |
| Observables    | -                    | Integrated st. pop. and $\sigma$                                    | St. pop. gradients and $\sigma$ profile                                                      |
| Final products | -                    | Scaling relations (St. pop., $\sigma$ , DM fraction vs. mass and z) | Scaling relations (St. pop.<br>gradients, DM fraction, mass<br>density slope vs. mass and z) |
|                |                      |                                                                     |                                                                                              |
| Crescenzo Tort | ora INAF-OA          |                                                                     | HAR meeting, 01/10/2024                                                                      |

## SHARP can help to understand the origin of the golden mass across cosmic history

| Observables       | - | Integrated st. pop. and $\sigma$                                    | St. pop. gradients and $\sigma$ profile                                                      |
|-------------------|---|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Final products    | - | Scaling relations (St. pop., $\sigma$ , DM fraction vs. mass and z) | Scaling relations (St. pop.<br>gradients, DM fraction, mass<br>density slope vs. mass and z) |
| Crescenzo Tortora |   |                                                                     |                                                                                              |



## Wish you a "SHARP" future

**Crescenzo Tortora** 

INAF-OACN

INAF Birthotec.

