Constraining the stellar IMF of unresolved stellar populations with SHARP

Francesco La Barbera INAF-Osservatorio Astronomico di Capodimonte

LAYOUT

IMF-sensitive features

Possibility to constrain the IMF shape from integrated light (Faber&French1980)

Constraining the low-mass end: a difficult task !!

We can break the degeneracies, in principle, using suitable sets of indicators (Conroy+2012a; Tang&Worthey2015).

It is crucial to study several features, from different chemical species, over a large spectral range.

LAYOUT

A bottom-heavy IMF in luminous ETGs

Trend from a Kroupa-like IMF ($\sigma \le 150$ km/s), to a bottom-heavy IMF at high σ .

The relation is consistent with M_{*}/L trends from

- dynamics (Cappellari+2012, 2013a, J. Thomas+2011, Dutton+2012, Wegner+2012, Tortora+2013)

- lensing (Auger+2010, Treu+2010, Barnabé+2011), but see Smith&Lucey(2013), Smith+2015

including the contribution of low-mass stars and remnants

A bottom-heavy IMF in the cores of ETGs ?

IMF-slope radial gradients with optical+NIR (OSIRIS@10.4m-GTC) spectroscopy → IMF gradient detected, for the first time, in the high- σ ETG NGC4552 → No IMF radial gradient for NGC4387

Many other papers have found IMF radial gradients at $z\sim 0$

Sarzi+2018; van Dokkum+2017; La Barbera+2016, 2019, 2021; Barbosa+2021; Marti'n-Navarro+2019, 2021; Feldmeier-Kraus+2020, 2021; Parikh+2019; Zhou+2019; Domi'nguez-Sa'nchez+2019; Lonoce+2021 (but see Zieleniewski+2017, 2017; McConnell+2016)

LAYOUT

IMF-sensitive features with SHARP

Absorption features considered here:

IMF (4700<λ<8600Å)

Mg4780, NaD, TiO1, TiO2, NaI8190, CaT

Metallicity and abundances C4668, Fe5270, Mgb

Requiring that features do not overlap telluric bands, and fall within the SHARP wavelength range, we can constrain the IMF:

Up to $z\sim 1.6$ with optical+NIR features (i.e. the same as at $z\sim 0$).

Up to $z\sim2.4$ with optical features only (i.e. no NaI8190 and no CaT).

 \longrightarrow Up to $z\sim2.8$ with the TiO's only.

 \implies No K-band: $z \le 1.1$, 1.6, 1.8

 \longrightarrow K band allows us to add FeH0.99 and NaI1.14 at z \leq 1.1

Why to push IMF studies at higher redshift

A bottom-heavy IMF in the center of massive ETGs at z~0 requires that the IMF changes with time (Weidner+2013; Ferreras+2015)

0.1

10

Stellar mass (M_{Sun})

Different IMF parametrizations_

100

0

3

2

Ζ

Corresponding evolution of the M*/L with z

(EMILES 1SSP models, solar [Z/H], z_{form}~4)

IMF constraints vs. redshift

IMF-sensitive features vs, redshift for 1SSP models with [Z/H]_{Solar}, z_{form}~4, and different IMFs.

The effect of abundance ratios is smaller at higher z.

NaI8190 is very effective to single out bottom-heavy and double-value IMF models.

For indices like TiO2, the effect of SFH should be properly taken into account.

In principle, with high-S/N and excellentquality spectra at $z \ge 1$, we can distiguish among different models.

Hatched regions reflect possible uncertainties (~0.05dex) on the estimates of abundance ratios ([α /Fe], [C/Fe], [Na/Fe]) and metallicity.

Exposure times with SHARP – IMF in the center

- Massive quiescent galaxies ($M_* > 10^{11}M_{Sun}$) at z=1.6, z=2.4, and z=2.8, respectively.
- We assume (typical) structural parameters with Sersic n=4, and (i) R₂=1kpc (~125mas), (ii) Re=2kpc (~250mas), and (iii) Re=4kpc (~500mas).
- We use the SHARP NEXUS ETC (v.0.2,<u>https://sharp.lambrate.inaf.it/</u>), with slit width of (i) 70mas, (ii) 140mas, and (iii) 280mas (extraction radius of 1/3R_e).

Exposure times with SHARP – IMF gradients

SHARP will allow us to study IMF radial gradients, at least for some massive ETGs, at z>1.

SHARP multiplexing – IMF constraints

•Number densities of quiescent galaxies from Muzzin+2013 (COSMOS/UltraVista) •SHARP-NEXUS FOV of 1.2'x1.2'_

Expected number of quiescent galaxies (N_Q) per NEXUS field at $1 \le z \le 3_{-}$

 $N_0 = 0.4 \pm 0.2 \ (0.9 \pm 0.3) \text{ gals for } M_* > 10^{11} (10^{10.5}) M_{Sun}$

•Kriek+2024 obtained spectra for 9 quiescent galaxies with H<21.8, 1.9<z<2.3, within two MOSFIRE@Keck fields (6.1'x6.1' each).

•We rescale the number densities of Muzzin+2013 to match this number

 N_q =1.0±0.3 gals per NEXUS field

•We consider the rich galaxy cluster of Newman+2014, at $z\sim1.8$ •N_Q=7 quiescent galaxies with H<21.8, within ~1 NEXUS FOV.

 T_{exp} ~20-30hrs with NEXUS (x7 larger without multiplexing)

Summary

Thanks to its angular resolution and wavelength range, SHARP@ELT will allow us to probe the IMF in the center of massive quiescent galaxies up to z~2.8, with optical+NIR spectroscopic features, as in ETGs at z~0

For some of the brightest galaxies, it will be possible to constrain IMF radial gradients, out to ~1Re, at $z \ge 1$.

Other avenues:

•IFS kinematics to constrain the (overall) M/L within $1R_e$

•Exploiting UV IMF-sensitive features (e.g. MgII2800 @ $z \ge 2.4$ with SHARP)

•Fluctuation spectroscopy (ETGs at z~0)