The Emergence of **Spiral Galaxy Structure** at Cosmic Noon

A science case for SHARP

Stefano Zibetti & Anna R. Gallazzi – INAF - Arcetri Astrophysical Observatory, Florence

Monday 30th September - Wednesday 2nd October 2024 Sala Bassetti - Palazzo Brera, Milano

Unveiling the Universe with SHARP: a Spectrograph Proposal for MORFEO@ELT

Spiral galaxies at Cosmic Noon What we know

- **Cosmic noon**: 1.5<z<3 peak of the cosmic SFH
- The majority of SFGs around the MS and $M_* > 10^9 M_{\odot}$ are exponential disks, increasing with mass and time (KMOS -> SINFONI, see Förster-Schreiber & Wuyts 2020 review and refs therein)
- The overall structure from rest-optical/UV light and colors correlates with location in the M-SFR plane, with most star formation happening in disks, while quiescent galaxies feature cuspier profiles.

Hubble sequence

(morphology \leftrightarrow stellar populations) in place already *since z~2.5*

- What is the **link** between structure/morphology and **SF** suppression?
- How is this reflected in the chemical enrichment?

a Stellar mass maps (HST/CANDELS)

Emergence of spiral structure at cosmic noon with SHARP - Zibetti & Gallazzi - SHARP Workshop in Brera 30.9.-2.10.2024

Structure evolution and SF/Chemical enrichment go hand in hand Hints from local spatially resolved archaeological studies

stellar age and metallicity with

Zibetti & Gallazzi (2022)

Emergence of spiral structure at cosmic noon with SHARP - ZIDETTI & Gallazzi - SHARP workshop in Brera 30.9.-2.10.2024

Structure evolution and SF/Chemical enrichment go hand in hand Hints from local spatially resolved archaeological studies

stellar age and metallicity with

Emergence of spiral structure at cosmic noon with SHARP - ZIDETTI & Gallazzi - SHARP workshop in Brera 30.9.-2.10.2024

Spiral galaxies at Cosmic Noon What we (are going to) know with current facilities (JWST)

- Many more morphological/structural details only available in the r.f. optical
 - **Spirals** (and **bars**) in SFing disks

 Emission line maps and gas kinematics at much higher resolution

Ferreira+2023

Spatially resolved SEDs Benton+2024

Emergence of spiral structure at cosmic noon with SHARP - Zibetti & Gallazzi - SHARP Workshop in Brera 30.9.-2.10.2024

What JWST can deliver today JWST SUSPENSE: 16.4hrs of NIRSpec, on 20 targets $H \sim 20 - 23 \text{ mag}_{AB}$

Emergence of spiral structure at cosmic noon with SHARP - Zibetti & Gallazzi - SHARP Workshop in Brera 30.9.-2.10.2024

Spiral galaxies at Cosmic Noon What we would like to know and we need SHARP for

- Questions
 - Which/how many bulges originate from disks \bullet dynamical evolution? ("pseudo-bulges")
 - What is the role of **secular processes an** •
 - What is the role of external interactions
 - Which/how many **bulges** are **pristine**? ("class \bullet bulges")
 - How often are disks (re)grown around a pre • existing bulge?
 - Is the growth of a bulge a "verdict" of quenching? Or slow **reduction of SFE**?

	How to answer
s via	Date different structural components possibly characterize their SFH
d bars?	 Determine their chemical enrichment
?	 Map the kinematics of the stellar component
ssical	 Find signatures of mergers/interactio
)-	

Observations needed in integral field spectroscopy

- **Targets**: SFing galaxies at 1.5<z<3, $M_* \gtrsim 10^{9.5} M_{\odot}$
- **Optical rest-frame spectroscopy** (see Gallazzi+2005 ... Zibetti+2017, 2024 for our methodology)
 - Across the 4000Å break, up to ~5500Å to cover Mg and red Fe complexes (better up to Halpha, SII ...)
 - R>~2500
 - "High" SNR ~10-20 per r.f. Å
- \Rightarrow Average stellar population properties (mean age, Z, main abundance ratios [α /Fe]), dust attenuation
- Basic characterization of the SFH
- Basic stellar (+gas) kinematics: velocity and velocity dispersion (higher moments?)
- **Spatial resolution** to characterize different structural components:
 - Effective radii ~2 kpc (e.g. Martorano+2024), bulge sizes <~1 kpc: ~0.2", bulges <~0.1" @z~2
- Statistics: >~100 galaxies to capture diversity and variety of mechanisms at work

Emergence of spiral structure at cosmic noon with SHARP - Zibetti & Gallazzi - SHARP Workshop in Brera 30.9.-2.10.2024

Why SHARP? **VESPER** multi-IFU

• Wavelength coverage: NIR coverage enables detection of Hα up to z~2.6 and Mg absorption features up to z~3.6

- To have full spectral coverage from $3800\text{\AA} \rightarrow z > 2.15$
- Sensitivity: in 4hr-integration SNR~15 per observed Å (i.e., ~25 per rest-frame Å at z~2) for $H_{AB} = 24$ (point-like), corresponding to $M_* \sim 10^{9.5-10} M_{\odot}$ at z~2 (according to P. Franzetti's ETC).
- Spatial resolution: 31 mas/spax probes well below kpc scales, allowing to trace bulges, bars and even spiral arms (note JWST-NIRSpec has 100mas/spax, ~3 times worse)
- IFU spatial coverage captures disk perturbations at ~6 kpc >~3 Re
- Multiplexing: ~10 galaxies brighter than $H_{AB} = 24$ per field, to match 12 IFUs
 - Note: this science case makes good use of the proposed instrument multiplexing

Segmenting galaxies according to structure **becomes feasible!**

Conclusions

- present or planned facility
 - Better <u>spatial resolution</u> than **JWST**
 - 2D spatial resolution and multiplexing advantage over MICADO
 - Multiplexing advantage over HARMONI
 - More <u>spectral coverage in the NIR</u> than **MOSAIC**
- gain in multiplexing (~3x)
- Complementary to studies of passive galaxies (normal and compact)

 SHARP (VESPER) ideal instrument to study the emergence of structure in star forming disks at cosmic noon: *unique features* that make it superior to any

Complementarity with SHARP-NEXUS: spatial resolution along one axis only, but

Emergence of spiral structure at cosmic noon with SHARP - Zibetti & Gallazzi - SHARP Workshop in Brera 30.9.-2.10.2024