

SCIENCE WITH MORFEO@ELT

Francesca Annibali (INAF-OAS Bologna) C. Arcidiacono, G. Chauvin, S. Douté, E. Vanzella, and the MORFEO science team

Unveiling the Universe with SHARP 30th September – 2nd October, 2024 - Milano

AO with MORFEO at ELT

 ✓ MORFEO will provide spatially uniform multi-conjugate adaptive optics (MCAO) correction to MICADO over a large field of view (~1 arcmin²)

✓ MORFEO will also support SCAO over a smaller ~10" field of view

- \checkmark Uniform Strehl Ratio and FWHM over a large field of view
- ✓ Large sky coverage

Possibility to adress a large variery of science cases based on <u>astrophysical relevance</u> rather than on feasibility criteria

Science themes with M&M at ELT

Solar system

Planetary systems and exo-planets

Trans Neptunian objects

- ✓ Beyond Neptune (30<a<100 AU)</p>
- ✓ 3500 discovered since the 90's (70,000 > 100 km expected)
- ✓ 30 to 2,500 km in diameter
- ✓ M_{KBO}>100 M_{asteroids.}
- \checkmark Icy remnant planetesimals of the disk that formed the Solar System
- ✓ Among the least altered material of the Solar System

provide constraints on the timing and scenario of formation of the early Solar System

Trans Neptunian objects

Trans Neptunian objects

- ✓ Are typically faint (24<mag<16)</p>
- ✓ Move fast on sky (>0.3 mas/sec)

- ✓ non-sideral tracking required (telescope tracks the target while moving wrt NGSs)
- ✓ Need to compute target ephemerides and searching for 3 NGS in NIR star catalogs
- Reduced performance (depending on target velocity)

non-sideral tracking MCAO mode

non-sideral tracking MCAO mode

Trans Neptunian objects – M&M performances:

Haumea icy dwarf planet (D=32 mas, V=19.1, PM=0.4 mas s-¹)

Credit: S. Douté

AB Aurigae:

- ✓ Herbig A0V star
- ✓ 2.4 M⊙
- ✓ 162.9 pc
- ✓ 2 Myr

5 times better resolution with MICADO@ELT !

AB Aurigae:

- ✓ Herbig A0V star
- ✓ 2.4 M⊙
- ✓ 162.9 pc
- ✓ 2 Myr

5 times better resolution with MICADO@ELT !

Credit: G. Chauvin

Post-

(credit: Antoine Alaguero, IPAG)

SCAO mode

- star: _ 4000 K, 1 M_☉, 2R_☉
- planet: -850 K 5 x10⁻⁸<L_P<5 x 10⁻⁴ L_O 5 au $< D_P < 50$ au
- disk: 0.01 M_®
- Atmospheric bg _ (as a function of λ)
- Lyot coronograph _
- **PSF** sequence _ 90 images, 10 s each (COMPASS/MYSTICH software, Baudoz+19)
- Detector noise

Radiative Transfer model (1)

Angular Differential Imaging

RESULTS:

- ✓ Planet detection complicated by disk
- \checkmark Large λ (K) favors planet Short λ (J) favors disk
- \checkmark Jupiter like planets recovered also at separations of $\gtrsim 15$ au.

(credit: Antoine Alaguero, IPAG)

SCAO mode

RESULTS:

- Planet detection complicated by disk
- Large λ (K) favors planet
 Short λ (J) favors disk
- ✓ Jupiter like planets recovered also at separations of ≳15 au.

Resolved stellar populations

CMD are powerful tools to age-date stars

Resolved stellar populations

CMD are powerful tools to age-date stars

Resolved stellar populations

Accessing inner regions of Virgo Ellipticals

Accessing inner regions of Virgo Ellipticals

MCAO mode

Schreiber et al. 2014

RESULTS:

- $\checkmark\,$ Metallicity distribution is better recovered in lower SB regions
- $\checkmark\,$ Metallicity bins are well separated at R>0.5 Re
- \checkmark (I-J) and (I-H) diagrams more effective than (J-K)

Resolving stars in Nuclear Star Clusters

Gullieuszik et al. (2014)

SCAO/ MCAO mode

Resolving stars in Nuclear Star Clusters

Gullieuszik et al. (2014)

Model:

<u>NSC</u>: King profile, $r_e = 0.27$ ", ~10⁶ MO, (1-4-10) Gyr <u>NGC 300:</u> disk, $\mu_{\rm C}(\rm H) \sim 17.3 \text{ mag arcsec}^{-2}$, const. SF since 12 Gyr ago

I = I

Recovered CMDs

D=2 Mpc, age=10 Gyr

Age-dating capability

SCAO/

MCAO mode

Dynamics of dense stellar systems with high-precision astrometry

SCAO/ MCAO mode

Searching for intermediate mass BH

Fiorentino et al. (2020)

Dynamics of dense stellar systems with high-precision astrometry

SCAO/ MCAO mode

Searching for intermediate mass BH

Fiorentino et al. (2020)

The high redshift Universe

MORFEO-MICADO at ELT: <u>comparable sensitivity</u> to JWST but ~6 times <u>better spatial resolution</u>

Assumptions:

2) HST- dark SED (z=2.85)

Simcado

L. Pasquale Ms. thesis at Bologna (supervisors F. Annibali & C. Gruppioni, MORFEO ST member)

Simulated M&M images

-9

12

8

Mowla + 24

see talk by Matteo Messa

High-z star forming clumps

Populating an host galaxy with star clusters...

...and moving it to z=1behind a cluster (z=0.44)

Irene Mini's work -PhD student at Bologna University (supervisor: M. Meneghetti, MORFEO ST member)

M&M@ELT spectroscopic capabilities

JADES-GS z14-0, Carniani +24

UV rest -frame diagnostic lines for AGN

Revealing accreting BH at high z, down to lower masses than accessible before! (IMBH)

. Thanks!

Q1 (ε=0.43") on small FoV (Φ=20")

band	I	Y	J	Н	к
SR from PSF	0.045	0.13	0.20	0.39	0.58
SR from Marechal	0.03	0.09	0.19	0.38	0.58

Sky coverage, K band

P50 profile (median conditions)

P90 profile (worst conditions)

P10 profile (best conditions)

