# Paranal: Present and Future

1.00.22

Data (







### **VLT Instruments 2024**







UVES



UT3

CRIRES





SPHERE







MUSE



HAWK-I









#### FLAMES





### **VLT/I angular resolution**



VLTI Unique resolution Astrometry ! AO and VLTI/ Coupled spectroscopy ..



### **VLT spectral coverage**

• Community very active: All VLT spectrographs have been successfully used for chemical analysis

![](_page_5_Figure_3.jpeg)

### 2025: MOONS, Multi-Object-Optical-Near Infrared-Spectrometer for the VLT (Gonzalez et al. 2024)

![](_page_6_Picture_1.jpeg)

![](_page_6_Figure_2.jpeg)

![](_page_7_Picture_0.jpeg)

# **MOONS:** galaxy evolution from early universe to present day

![](_page_7_Picture_2.jpeg)

- **SDSS-like survey** across peak of star-formation and black-hole accretion up to first galaxies at high-z

- Diagnostics for passive/star-forming galaxies: Metallicity (R23,N2), SFR (H $\alpha$ , H $\beta$ , [OII]), extinction (H $\alpha$ /H $\beta$ ), Galaxy mass ( $\sigma$ v), BH mass (BLR)

#### **High-resolution**

- **Stellar population surveys** of the dense regions of the (reddened) Milky Way and its satellites

- Stellar population diagnostics for millions of stars (stellar parameters, abundances, age indicators, radial velocities)

![](_page_7_Figure_8.jpeg)

![](_page_8_Picture_0.jpeg)

### **MOONS @ UK-ATC**

#### Fully populated Instrument cooldown and tests

Instrument is completed, Corrector mounted and commissioned at VLT UT1 Two motor failures (grating mech) -> investigation from ATC -> coating on gear boxes affect lifetime of motors. Replace gear boxes and new design -> **Preliminary Acceptance Europe in July, shipment to Chile in Q1 2025** 

#### Metrology system

9

![](_page_8_Picture_5.jpeg)

- 944 fully tested and integrated FPUs (requ. was 800, few for spares)
- Datum residuals investigation (but <0.1" on sky even for outliers)
- Photogrammetry system: FPU mean error of 5 - 10 micron
- Single crane rotation proc test and val, post-integration cabling, cooling, etc.

![](_page_8_Picture_10.jpeg)

![](_page_8_Picture_11.jpeg)

![](_page_8_Picture_12.jpeg)

## 2025: 4MOST, the optical MOS for the VISTA 4m

### telescope (de Jong et al. 2024)

4MOST is a complex FACILITY

![](_page_9_Figure_3.jpeg)

L. Pasquini, Paranal Present and Future, Milan October 2024

10

### 4MOST

#### **Baseline Specification**

| Requirement                         | Baseline Specification    |
|-------------------------------------|---------------------------|
| Field-of-View in hexagon            | 4.1 degree <sup>2</sup>   |
| Fibre multiplex per pointing        | 2436                      |
| Smallest target separation          | <17*                      |
| Low-Resolution Spectrographs (LRS)  |                           |
| Fibre multiplex                     | 1624                      |
| Spectral resolution                 | R>4000–7800               |
| Wavelength coverage                 | 370–950 nm                |
| High-Resolution Spectrographs (HRS) |                           |
| Fibre multiplex                     | 812                       |
| Spectral resolution                 | R>18,500                  |
| Wavelength coverage                 | 392.6–435.5,<br>516–573 & |
|                                     | 610–679 nm                |

- 4MOST 5 (+5 optional) Years surveys: 70% Consortium, 30% community
- 5 Galactic + 5 Extra-Galactic GTO surveys
  - https://www.4most.eu/cms/science/galconsurv/
  - https://www.4most.eu/cms/science/exgalconsurv/
- 6 Galactic and 9 Extra-Galactic community surveys:
  - <u>https://www.eso.org/sci/observing/PublicSurveys/4m</u> <u>ost-surveys-projects.html</u>
- Low and High acquisition spectra simultaneously
  different surveys simultaneously

![](_page_10_Picture_11.jpeg)

![](_page_11_Picture_0.jpeg)

### 4MOST Status @ AIP: PAE1 Reached on 24/09!!

![](_page_11_Picture_2.jpeg)

![](_page_12_Figure_0.jpeg)

![](_page_12_Picture_1.jpeg)

### MAVIS IFU Spectrograph

![](_page_13_Figure_1.jpeg)

![](_page_13_Figure_2.jpeg)

![](_page_13_Picture_3.jpeg)

### CUBES: Cassegrain U-Band Efficient Spectrograph

| Spectral Resolution     | ~20000 (~7000 LR mode also provided)                                                          |
|-------------------------|-----------------------------------------------------------------------------------------------|
| Wavelength Range        | 305 - 400nm                                                                                   |
| Slit length/width       | HR: 10" x 1.5" (sliced into six 0.25" slitlets)<br>LR: 10" x 6" (sliced into six 1" slitlets) |
| Efficiency              | >40%                                                                                          |
| Focus                   | UT1/2/3 Cassegrain                                                                            |
| Sensitivity             | S/N>20 for U=18 mag at 313 nm (0.007nm wavelength bin)                                        |
| Acquisition and guiding | V <sub>ref</sub> ~22, photometry error<10%                                                    |

![](_page_14_Figure_2.jpeg)

![](_page_14_Picture_3.jpeg)

15 L. Pasquini, Paranal Present and Future, Milan October 2024

+ +€\$+

### **BlueMUSE (Phase A Study)**

![](_page_15_Picture_1.jpeg)

Blue-optimised, medium spectral resolution, panoramic integral field spectrograph

![](_page_15_Picture_3.jpeg)

- Lambda > 350 nm
- twice spectral resolution than MUSE
- 1 arcmin<sup>2</sup> Field of View
- 0.2" x 0.3" spaxel
- 16 IFUs

![](_page_16_Picture_0.jpeg)

### **BlueMUSE in a nutshell**

- Builds on MUSE successes
- Highly complementary
- Science cases from solar system to high Z galaxies

![](_page_16_Figure_5.jpeg)

![](_page_16_Figure_6.jpeg)

![](_page_16_Figure_7.jpeg)

### Second Generation Deformable Secondary Mirror at the VLT (2GDSM, Phase A Study)

- AOF is certainly one of the major VLT success
- AOF rests on three pillars:
- Lasers : One laser/UT is now provided by GRAVITY+
- DSM
- AO Modules & Instruments
- Provide the second pillar for a second UT: a new DSM
  - Will allow to move ERIS, optimizing the UT time distribution (MAVIS is coming!)
  - Will allow the best use of G+ lasers, opening new exciting possibilities
  - Will use the same ELT technology that will retrofit the AOF DSM

![](_page_17_Picture_10.jpeg)

![](_page_17_Picture_11.jpeg)

![](_page_18_Picture_0.jpeg)

### **Best science needs even UT pressure**

- When pressure on one telescope is too high, excellent proposals are turned down
  - Many implications
  - MUSE and ERIS are at the top of most requested instruments, MAVIS promises to be at the same level

![](_page_18_Figure_5.jpeg)

![](_page_18_Figure_6.jpeg)

![](_page_19_Picture_0.jpeg)

### **VLT/I: Strategic Choices**

- Focus on unique VLT/I strengths and exploit the uniqueness of the VLT/I
  - The VLT/I shall host a mix of workhorse and dedicated instruments
    - Follow the scientific requirements of ESO community

![](_page_20_Picture_0.jpeg)

### **Current Strategic view:**

- VLT/I strengths, uniqueness and leadership area:
- Flexibility of operations, small/large programmes, reactivity, monitoring
- Diversity and quality: unique workhorses such as X-Shooter and MUSE
  - High resolution spectroscopy
    - Integral field spectroscopy
  - High contrast imaging with AO
  - Interferometry & Long Term Plan for VLTI
  - Access to blue in the era of JWST and ELTs.

<sup>21</sup> L. Pasquini, Paranal Present and Future, Milan October 2024

![](_page_21_Picture_0.jpeg)

![](_page_22_Picture_0.jpeg)

### VLT/I & Paranal

A glorious past, a great present and a superb future

### ELT! (One observatory..)

VLT/I continue to have a relevant role: call late 2025 for VLT/I new projects

ESO will also start the process to define the future of VLT/I and next ESO large facility

Be active in these processes!

![](_page_23_Picture_0.jpeg)

# Thank you!

![](_page_23_Figure_2.jpeg)

![](_page_23_Picture_3.jpeg)