

MICADO, the first light ELT camera

Ric Davies Max Planck Institute for Extraterrestrial Physics, Germany

Netherlands: NOVA Germany: ESO, MPE, MPIA, USM, IAG France: CNRS/INSU Ltaly: INAF

Key Capabilities

MICADO will be used with MORFEO to provide:

Imaging	 0.8-2.4µm with 30 broad/narrow filters 1.5 & 4mas pixels for 19" & 51" FoV at 6-12mas Similar sensitivity to JWST, and 6× better resolution
Astrometric imaging	 10-50μas precision anywhere in the field 10μas/yr = 5km/s at 100 kpc after only a few years
High Contrast imaging	 focal & pupil plane coronagraphs angular differential imaging small inner working angle
Spectroscopy	 for compact sources fixed configuration for 0.83-1.57μm & 1.50-2.46μm R ~ 20000 for point sources (R ~ 10000 across slit)

Resolution in context

10 mas at		
Galactic Center	8 kpc	0.4 mpc
Cen A	4 Mpc	0.2 pc
Virgo Cluster	18 Mpc	1 pc
Cosmic Noon	z ~ 2	80 pc

HST at 2 μm, JWST/VLT at 5 μm ~160 mas

> JWST/VLT at 2.2 μm, ELT at 12 μm ~65 mas

VLT at 500 nm, ELT at 2.2 μm ~12 mas ALMA C8 230 GHz, HST at 500 nm ~40 mas

ELT at 1 µm ~6 mas

MICADO quicklook

- MICADO will provide
- Stand-alone phase

MICADO & MORFEO

- MICADO will provide imaging, astrometry, slit spectroscopy, coronagraphy.
- Stand-alone phase with just SCAO during initial operations on Nasmyth A.
- Long term operation with MORFEO (LGS-MCAO, & keeping SCAO) – on Nasymth B.

Project led by INAF, uses 6 LGS & up to 3 NGS for uniform AO correction over full MICADO field.

MICADO with MORFEO on Nasmyth Platform

MICADO from concept to hardware

Views of the cryostat

VLT operational model not scalable to ELT

- Paranal/Armazones as a single multi-site observatory.
- Remote operation: minimize on-site activity & commuting.
- Better scheduling of maintenance activities:
 - Decrease reactive maintenance.
 - Increase predictive maintenance.

Cold test of NOVA's Pupil Wheel Mechanism at MPE

Phase I @ MPE X4 ([Satellite] Integration Hall) Cold system MPE X4

ESO LIH

MICADO Timeline

A rough guide to sensitivity

- Resolution is equally important
- Depends on a lot of assumptions

(atmospheric conditions & AO performance, exposure configuration & detector read noise, etc)

• Better if you use ScopeSim

Galaxy Evolution: In-situ vs Archaeology

"JWST will tell us the *When* and the *Where*, but with MICADO, we will be able to tell the *How*" (NMFS)

Ever closer in the Galactic Center

- Unique laboratory to explore strong gravity around the closest massive black hole
- Combine with the ultra-precise GRAVITY results to reach fainter magnitudes & larger scales

GRAVITY Collab+ 2022 S29: closer than S2 S55: shorter period than S2 S300: K = 19.5 mag

MICADO spectroscopy

- Cross-dispersed gratings in fixed configuration; waveband selection via order sorting filters.
- Short 3" slit for IzJ band; long 15" slit for HK & J bands to allow better sky characterization. •
- Default operation with slit along parallactic angle; can use at fixed sky position angle, but full • spectral range may not be coupled.

Galactic Center: measuring black hole spin with MICADO spectroscopy

"A hypothetical S2-like star, but with 3-5x smaller semi-major axis, would enable us to detect the spin" (SG)

Velocity difference due to spin Schwarzschild precession of orbit in its plane: ۲ S2, Simulated star at 0.3a_{s2} measured by GRAVITY already. < 1 km/s10-100 km/s First spin term: frame dragging (Lense-Thirring S0-2/S2 100 Eb precession), but spin effects $\propto r^{-3}$. (km s⁻¹) $(km s^{-1})$ -100 δZ 82 S -20015 45 30 2 6 Ω 4 t (yr) t (yr) Zhang+15 precision needed depends on spin, orbit inclination, size, eccentricity

Astrometry

- Standard imaging achieves ~2 mas precision.
- Astrometry requirement is 50 µas precision (within any local region over the field); relative not absolute.
- Configuration options might be more limited for highest precision (filters, wavebands, airmass, etc)
- Astrometric mode essentially the same as standard imaging, but achieving 10-100× higher precision will likely take time & experience.

We *cannot* measure precisely the separation of 2 stars anywhere in the field.

On largest scales, 50µas is nearly ~10-6.

Plate scale uncertainty of 10⁻⁴ limits precision over 30" to a few mas.

We *can* measure precisely the separation of 2 stars locally, anywhere in the field.

On 10" scales, precision limited to order ~100µas by uncalibratable distortions (e.g. from ELT).

Below ~1" separation, plate scale error no longer dominates, so <50µas achievable.

30″ _{separation}

Measuring Black Holes in Globular Clusters

- No robust IMBHs in globular clusters.
- Mass of IMBH uncertain to orders of magnitude.
- Location of IMBH uncertain to arcsec scales.
- Even existence uncertain (& stellar mass BH cluster is an alternative).

Dispersion profile from HST proper motions in NGC 104 (Watson+ 15): yellow region cannot be sampled due to crowding.

MICADO's role:

- Image wide field at high resolution.
- Overcome extreme crowding in central region: probe dispersion to subarcsec scales.
- Uncertainties from simulations show MICADO can distinguish whether there is a BH.

NGC 104 (47 Tuc) at 4.5 kpc

High Contrast Imaging

- Focal plane masks: CLC-15, 25, 50
- Pupil plane masks: vAPP, SAM-9, SAM-12 used with 6" FoV
- Central detector only, small 1.5 mas pixel scale, special (faster) read mode

		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
	focal plane wheel	Lyot + ND3	Lyot + ND1	Lyot	уарр	stop-IJH + H-cont	stop-IJH + [FeII]	stop-K	stop-IJH	stop-K + K-long	stop-K + K-cont	stop-K + Br-gamma	stop-K + H2_1-0S(1)	SAM-9	SAM-12	stop-K + He-I	stop-IJH + Pa-beta
2	High Contrast Field (6")	х	Х		х									х	х		
3	Small Field (19")	Х	х			х	х	х	x	х	х	х	х			х	х
4	Large Field (59,5")	Х	х			х	х	х	x	х	х	х	х			х	х
5	CLC-15	X	х	х	х									х	х		
6	CLC-25	х	х	x	х									х	x		
7	CLC-50	х	х	x	x									х	x		
			•							-							

• Orange: not official configurations, but to be kept as possible options when/if testing allows

MICADO as an exoplanet camera & pathfinder

Primary aim to exploit smaller inner working angle

- Exoplanets at small orbital separations (a few AU) around nearby (<20pc) stars.
- Exoplanets at larger separations (>10 AU) around nearby stars (complementary to SPHERE) as well as more distant stars (>100pc).
- Circumstellar disks.

MICADO as an exoplanet camera & pathfinder

Primary aim to exploit smaller inner working angle

- Exoplanets at small orbital separations (a few AU) around nearby (<20pc) stars.
- Exoplanets at larger separations (>10 AU) around nearby stars (complementary to SPHERE) as well as more distant stars (>100pc).
- Circumstellar disks.

K-band 2.7au 8.9au COMPASS/MISTHIC (Baudoz/Huby) - β Pic c, 9 M_{Jup} planet at 2.7 au (e = 0.24) - MICADO 1 hr observation sequence at meridian b SPHERE/SHINE - β Pictoris midplane Figure courtesy warp of G. Chauvin 0.5" 10au

MICADO - β Pictoris b & c

MICADO as an exoplanet camera & pathfinder

- Post processing with ADI -> Contrast to ~10⁻⁶.
- In good seeing, MICADO can detect an 800 K planet at 5 AU in H & K-band in 30 mins.
- Small inner working angle -> characterise exoplanets in synergy with Gaia or RV surveys.
- GRAVITY can detect (but not image) planets in the MICADO regime, that are not observable with HCI on 8-m telescopes (from Pourré+ 24).

Baudoz et al. 2019, Huby et al. 2022

MICADO...

- will do imaging, astrometry, slit spectroscopy, and coronagraphy.
- is identified by ESO as a camera for ELT first light.
- will initially work with its own SCAO system, and then with the MORFEO MCAO system.
- is a camera you'll want to use: try out ScopeSim <u>https://scopesim.readthedocs.io/</u>

See also: The ESO Messenger vol. 182, p.17 <u>https://www.mpe.mpg.de/ir/micado</u> <u>https://elt.eso.org/instrument/MICADO/</u>

