

Finanziato dall'Unione europea NextGenerationEU







# Galactic dynamics at cosmic noon: a new era with ELT

#### Fabio Rigamonti & Fabio Ditrani

Credits to Ditrani F.

### The classical picture

S0 GALAXIES

**Disc galaxies:** rotationally-supported disc <u>formed mainly by in-situ star formation</u> + **Bulges:** 

- Photometric: "the central light component that is in excess of the inward extrapolation of an exponential disc"
  - Classical: looks like mini-ellipticals, dispersion-supported (can have little rotation), formed through violent events
  - Pseudo: rotationally-supported, shaped by secular processes

**Spheroids:** often associated to photometric bulges+ellipticals. Ideally, what have been originated by violent processes.







#### Most of the elliptical (beside the most massive) galaxies rotate







#### Pseudobulges are nuclear discs or inner part of bars (boxy-peanut)





Gadotti+2020

## High resolution photometry and kinematics are keys for unbiased understanding of galaxy structures!

High resolution photometry and kinematics are keys for unbiased understanding of galaxy structures!

## Dynamical modeling

### **The Model**





We propose a new methodology (**BANG**) to morpho-kinematically decompose galaxies:

- **Simultaneous modelling** of photometry and kinematics
- Robust Bayesian parameter estimation (Nested sampling)
- High computational efficiency (GPUs parallelization, x200 speed up)



#### **Application to NGC 7683**

Rigamonti et al., 2022



#### **Application to NGC 7683**

Rigamonti et al., 2022



Rigamonti et al., 2023 Rigamonti et al., 2024

Mapping Nearby Galaxies at APO (<u>MaNGA</u>):

- IFS survey (+10,000 galaxies ) of the SDSS
- mean z~0.03
- log flat stellar mass distribution in the range  $[10^9 M_{\odot}; 10^{11} M_{\odot}]$



- Reproduction of well-know kinematic scaling relation also <u>as validation</u> of our methodology
- Characterization of the inner and outer discs through their kinematics
- <u>Mass-budget and kinematics</u>: implications for photometric decomposition
- Light- and mass- weighted kinematics depending on star-formation: the role of <u>disc fading</u>

Rigamonti et al., 2023 Rigamonti et al., 2024

The slope is consistent with *Aquino-Ortiz et al., 2020* (b=0.31)

The scatter is **reduced by 30%** even without applying any quality-cut on the sample



- Reproduction of well-know kinematic scaling relation also <u>as validation</u> of our methodology
- Characterization of the inner and outer discs through their kinematics
- <u>Mass-budget and kinematics</u>: implications for photometric decomposition
- Light- and mass- weighted kinematics depending on star-formation: the role of <u>disc fading</u>

Rigamonti et al., 2023 Rigamonti et al., 2024



Rigamonti et al., 2024

- Reproduction of well-know kinematic scaling relation also <u>as validation</u> of our methodology
- Characterization of the inner and outer discs through their kinematics
- <u>Mass-budget and kinematics</u>: implications for photometric decomposition
- Light- and mass- weighted kinematics depending on star-formation: the role of <u>disc fading</u>

Rigamonti et al., 2023 Rigamonti et al., 2024

#### **MaNGA: star-formation & kinematics**

Rigamonti et al., 2024



#### **High-redshift dynamics**

High resolution and kinematics combined with dynamical modelling.

Does it make sense to apply a **dynamical modelling** based approach at **high-redshift**?

## **High-redshift dynamics**



Ferreira et al. 2023



#### High redshift dynamics with VESPER

Can we get **measurements of the kinematics with VESPER** to obtain an unbiased characterization of the structures composing high-redshift galaxies?



Ferreira et al. 2023

### High redshift dynamics with VESPER



#### MaNGA

- z ~ 0.05, Re~8 kpc
- FoV 15 kpc (~ 20 x 20 kpc)
- Spatial Resolution ~0.5 kpc/spaxel
- Wavelength 360-1000 nm, resolution R~2000

#### **High-redshift dynamics with VESPER**



#### MaNGA

- z ~ 0.05
- FoV 15 kpc (~ 20 x 20 kpc)
- Spatial Resolution ~0.5 kpc/spaxel
- Wavelength 360-1000 nm, resolution R~2000

#### Vesper

- z ~ 2, Re~2-4 kpc
- FoV (1 IFU) (~ 12 kpc x 14 kpc)
- Spatial Resolution ~0.25 kpc/spaxel
- Wavelength 1200-2400 nm, resolution R~3000

#### **High-redshift dynamis with VESPER**



#### Vesper

- z ~ 2, Re~2-4 kpc
- FoV (1 IFU) (~ 12 kpc x 14 kpc)
- Spatial Resolution ~0.25 kpc/spaxel
- Wavelength 1200-2400 nm, resolution R~3000

Spatially resolved stellar kinematic and population 20 hrs exposure for S/N high enough for stellar kinematics

#### Conclusion

Dynamical modelling of high-redshift galaxies:

- Unbiased view on 3D galaxies structures to probe their growth with cosmic-time:
  - How stellar kinematic changes with cosmic time? Does it coevolve with the stellar population properties?
  - Where are classical bulges? How do they evolve? What are their shapes?
  - Do high-z bars have nuclear discs? When do they form?
  - What is the relation between mass, kinematics and quenching?
- Independent measurements of mass (dark and luminous) profiles:
  - Do dark-matter fractions evolve with redshift?
  - Are there evidences for IMF variations?