

From high-z protoclusters to local BCGs: Challenges for simulations

Stefano Borgani Dept. of Physics - University of Trieste INAF – Astronomical Observatory of Trieste INFN – National Institute for Nuclear Physics – Trieste ICSC - National Center for HPC, Big Data and Quantum Computing

Simulating protoclusters: environment of the early BCG assembly

 I.a Properties of the proto-ICM and their low-z fossil record
 I.b Star formation rates in protoclusters

 Connecting to the properties of the low-z BCGs

 II.a Stellar masses and SFR of BCGs
 II.b Metal share in ICM and stars

PART 1: Simulating Protoclusters

HST-ACS image of MRC 1138-262
The "Spiderweb" galaxy (Miley+06)
→ Complex dynamics of galaxies merging into the FR-II radio galaxy
→ "Flies" moving with v_{los} of up to ~10³ km s⁻¹

How typical is all this in the ACDM structure formation paradigm?

Dianoga Simulations

Courtesy of P. Rosati

The Dianoga Set with OpenGADGET3

→ 29 cluster Lagrangian regions resimulated at high resolution (Bonafede+12; Rasia+15; SB+24)
 m_{*}=2.6 10⁶ h⁻¹ M_☉; ε_{*}=250 cpc

OpenGADGET3 code: TreePM + SPH/MFM;

Hybrid MPI/OpenMP/OpenACC parallelism

➔ Hydro-1: SPH (Beck+16)

- Higher-order kernels, "Wake-up" for time-step of gas particles, Time-dependent artificial viscosity, Artificial conduction
- Hydro-2: MFM (Groth+23):
- Astrophysics:
- Cooling + SF + SN feedback (Springel & Hernquist 03; Valentini+18), Chemical enrichment (Tornatore+07), AGN feedback (Fabjan+14; Steinborn+15)

(Bassini et al. 2021)

Adjust the parameters of
 feedback to reproduce the observed
 scaling between SMBH masses and
 host stellar masses

Predict the correct SMF of cluster galaxies

Saro, SB et al. 2009

- SN-driven winds: SFR ~ 1750 $M_{\odot} \text{ yr}^{-1}$
- + AGN feedback: SFR ~ 1300 M_{\odot} yr⁻¹
- Significant amount of diffuse ICL already in place at z=2.16 (see talk by Nina Hatch; poster by Paola Dimauro)

Saro, SB et al. 2009

Progenitor of a today massive galaxy cluster:

 $M_{200}(z=0)=1.5 \times 10^{15} h^{-1} M_{\odot}$

<u>At z=2.1</u>: hosting a hot, X-ray bright and metalenriched proto-ICM:

```
L_{0.5-2}= 1.4 x 10<sup>44</sup> erg s<sup>-1</sup>
T<sub>X</sub>=3.8 keV
Z<sub>Fe</sub>= 0.57 Z _{\odot}
```

A deep (700 ks) Chandra exposure on the "Spiderweb"

→ Large Chandra program (700 ks) to characterize the proto-ICM and the AGN population in the "Spiderweb" protocluster (*PI: P. Tozzi – Tozzi+2022 ; Lepore+2023*)

A high-sensitivity ALMA observation of the "Spiderweb"

→ ALMA Cycle-6 proposal to detect the SZ signal around the Spiderweb galaxy (*PI A. Saro*)

→ ALMA+ACA observations secured the detection of the SZ signal from the proto-ICM (significance at $\simeq 6\sigma$)

→ Robust evidence for a pressurized athmosphere around the Spiderweb galaxy at z=2.16

→ Comparison with simulations: generation of realistic mock ALMA observations

→ Consistent with being associated to a virialized halo of mass ~ 3 x 10¹³ M_☉

Biffi et al. 2017

AGN feedback causes:

→ More widespread IGM enrichment at high redshift

→ Suppression of star formation

→ Many fewer metals locked back in later star formation

Low-z ICM metallicity as a fossil record of feedback history

Biffi et al. 2018 (see also Fabjan+2014, McCarthy+2015)

feedback

Star formation in "Planck blobs" with Herschel

Granato+2015

- Analyze progenitors of 24 clusters with *M(z=0) > 10¹⁵ M_☉*
- Use GRASIL-3D to account for dust reprocessing
- Mock IR and sub-mm images at z=2

For the two observed clusters:

- → Flux_{HFI}~ 1200 mJy (@857 GHz)
- Far larger than obtainable from simulations
- Clemens+2014: SFR within Planck beam for two z~2 clusters: [2.9 – 7] x 10³ M_o/yr

Q: how to get such a high SFR at z=2, still smaller BCGs by z=0?

Star formation in proto-cluster regions

(Bassini et al. 2021; Esposito et al. 2024, in prep.)

→ Model-prediction of the main sequence at z~2 below the observed one, both in the field and in protocluster

 \rightarrow Result almost independent of the adopted model of SF

- M_{VIR}[M_o] → SFR of the Spiderweb much reduced when including IR data, besides UV dust-
- corrected fluxes (Pannella et al. 2024, in 0.6 prep)
- 0.4

→ "Only" a factor 2-3 above simulation predictions

Star formation in proto-cluster regions

(Bassini et al. 2021)

→ Apparently a common feature of several semi-analytical and full hydro simulations

→ Observational trend for
 stronger SFR in (proto-)clusters at
 larger redshift qualitatively
 reproduced by simulations

→ Trend in simulations weaker than observed

→ Excess SF at low-z and deficit at high z

Remus+2023

Use <u>Magneticum</u> cosmological boxes to:

- Identify galaxy overdensities at *z*=4
- Verify the descendants to assess whether they end-up in genuine clusters by z=0

→ None of the most massive halos identified at z=4.2 ends up amongst the 15 most massive halos at z=0.2

Need for a homogeneous definition of proto-clusters to compare observations and simulations

Star formation in proto-cluster regions

Comparison of <u>TNG300 & MACSIS</u> predictions on SFR in proto-clusters to observational data → Model predictions ~1 order of magnitude below observed SFR

→ Similar results for the "empirical model" by Moster+13 and Behroozi+13

Lim+2024

- → Use <u>FLAMINGO</u> simulations (Schaye et al. 2023) to trace SFR in protoclusters
- → Compare the total SFR within FoF halos to observational data
- → Results in better agreement with observational data

<u>But:</u>

- Still low SFR at z>4?
- 2dex higher SFR than TNG at z=0
- → What about SFR in nearby BCGs?

PART 2: Simulating BCGs

BCG and stellar masses

→ M_{*BCG}-M₅₀₀ close to observations at low resolution (Ragone-Figueroa+2018)

 →At higher resolution different simulations all consistently predict too massive BCGs, especially in massive clusters:
 Bassini+2021 – Dianoga (Gadget-3)
 Bahè+2017 – Hydrangea/C-EAGLE (Gadget-3)
 Tremmel+2019 – RomulusC (ChaNGa)
 Nelson+2024 – TNG-Cluster (AREPO)
 Henden+2020 – FABLE (AREPO)

→ Same result for Dianoga when further increasing mass resolution (by a factor 2.5; SB+2024)

Star formation rates in BCGs

→Dianoga (Bassini+2021): SFR (and sSFR) in BCGs too large by ~1dex

- → <u>RomulusC</u> (Tremmel+2019):
- simulation of a relatively poor cluster with M₂₀₀~ 10¹⁴ h⁻¹M_☉
- some sSFR excess below z~1.5 (t_{Age}~ 4 Gyr), despite quenching

→ <u>FABLE</u> (Henden+2020):

 Still tendency for too large SFR at z~0.2

Metal share in galaxy clusters

Ratio between Fe diffused in the ICM and locked into stars (assumed to have solar metallicity)

Ghizzardi+2021: ICM metallicity from X-COP clusters (XMM-Newton) for which stellar metallicities are also available

- → Fe-share for few clusters
- → Large fraction of overall Fe budget in the diffuse gas

Biffi+2024 in prep: comparison with Dianoga and Magneticum simulations

→ Much lower Fe share: larger amount of Fe locked in stars

→ Apparently, not an issue with the ICM Fe content: good agreement with observed $M_{Fe,gas} - M_{gas,500}$ relation

→ Due to excess of star formation in simulations? <u>Quite possible</u>, but then correct ICM Fe content just a coincidence... (see also Molendi+2024)

→ Important implications on feedback mechanism responsible for both circulation of metal-enriched gas and quenching of star formation in protocluster BCGs/massive cluster galaxies!!

Metal share in galaxy clusters

Ghizzardi+2021: ICM metallicity from X-COP clusters (XMM-Newton) for which stellar metallicities are also available

- → Fe-share for few clusters
- → Large fraction of overall Fe budget in the diffuse gas

Biffi+2024 in prep: comparison with Dianoga and Magneticum simulations

→ Much lower Fe share: larger amount of Fe locked in stars

→ Apparently, not an issue with the ICM Fe content: good agreement with observed $M_{Fe,gas} - M_{gas,500}$ relation

- → Due to excess of star formation in simulations?
- <u>Quite possible</u>, but then correct ICM Fe content just a coincidence...
- But no problem at the scale of poor clusters....
- → Which definition of stellar mass? Within which radius? Including ICL? Down to which surface brightness?

→ Important implications on feedback mechanism responsible for both circulation of metal-enriched gas and quenching of star formation in (proto-)cluster BCGs/massive cluster galaxies!!

Conclusions

→ General properties of proto-clusters correctly predicted by simulations since a long time:

- → Presence of hot (X-ray) and pressurized (SZ) proto-ICM in one proto-cluster (Spiderweb)
- → Intense star formation in assemblying proto-BCGs, along with formation of an ICL component

→ Connection between high-z proto-cluster phase and low-z fossile records (*i.e. slope of ICM metallicity profiles*)

BUT:

- High level of SFR in proto-clusters is not trivial to produce in simulations (waiting for MUPPI....)
- Need to quench SF in BCGs and reduce their stellar masses at low redshift (new tests done @ 25x)
- Too much mass in metals predicted by simulations to be locked in stars but ICM metallicity OK...
- \rightarrow Simulations need to produce bursty SF at z = 2 4, then a highly efficient feedback mechanism:
 - to rapidly quench SF;
 - to circulate metals in the CGM/ICM before they are locked back in stars.

Q1: How robust is *observed stellar mass* within low-z massive clusters? **Q2:** How much ICL can we reasonably think we're missing in observations?