Intertwined Formation of H_2 , Stars, and Dust in Cosmological Simulations

Intertwined Formation of H_2 , Stars, and Dust in Cosmological Simulations

Dust Promotes H2 Formation

- Direct H_2 formation in gas very inefficient due to H_2 molecule difficulty to radiate away the excess energy. Relevant only in primordial conditions.
- \bullet When H atoms meet and form H₂ on a grain, the grain structure absorbs the excess energy and the molecule stabilizes.
- It takes place primarily on small grains.
- The most abundant molecule in the Universe is $H₂$. **Molecular Clouds are made of H2**+He+a few % metals (gas and dust)

cinthia.ragone@unc.edu.ar

H2)

Molecular Clouds as Bricks for Star Formation

Timescales:

5-20Myr before the onset of intense high-mass SF Fast <5Myr clearing of gas before the first SNe Lifetime: 20-40Myr for M33, Miura+ (2012) Lifetime: (27 +/- 12) Myr for MW, Murray (2011)

Schinnerer & Leroy 2024

SCHEMATIC VIEW OF MOLECULAR CLOUD EVOLUTION

and volume densities

l

material.

radiation, and thermal gas pressure

Newly formed massive stars rapidly impact their surrounding birth material via radiation and winds, reshaping or even disrupting the cloud

H2 is the Main constituent of Molecular Clouds

- $\mathcal V$ MCs are the densest and coldest component of the ISM
- \vee Very complex entities **Gravitation** Magnetic fields Heating & Cooling Turbulence & Shocks

Molecular Clouds as Bricks for Star Formation

De los Reyes & Kennicutt (2019)

l

cinthia.ragone@unc.edu.ar

Miville-Deschenes, Murray & Lee, 2017

H2 is the Main constituent of Molecular Clouds

MCs are the densest and coldest component of the ISM

 \vee Very complex entities **Gravitation** Magnetic fields Heating & Cooling Turbulence & Shocks

l Unweighted: $y=(0.66\pm0.06)x-2.70$ Bivariate: $v = (1.03 \pm 0.08)x - 2.96$ Linmix: $y=(0.67\pm0.05)x-2.71$, $\sigma=0.38$ Spirals kpc ั≻ \mathbb{M}_{\odot} -2 Σ_{SFR} \overline{a} $X_{MW}(CO)$ $N = 153$ $R = 0.76$

De los Reyes & Kennicutt (2019) INTEGRATED

Log Σ_{H_2} [M_o pc⁻²]

 Typical Sizes: 20 - 30 pc Typical Masses:10⁴ - 10⁵ M $_{\odot}$

j

Not Resolved in Cosmological Simulations

Cosmological simulations cover a volume of at least a few (tens of) Mpc

 -2

 -1

SF modeling from first principle is impossible in this context due to complex physical mechanisms across vast scale range (> 10 orders of magnitude in size).

Molecular Clouds as Bricks for Star Formation

Miville-Deschenes, Murray & Lee, 2017

Murante+10,15

Murante+10,15

fmol = fmol(P) "inspired" by Blitz, Rosolowsky+ works (calibrated with **LOCAL** observations)

Alternatively, fmol = fmol(Z , Σ) Krumholz+ theoretical works **ORIGINAL MUPPI**

Murante+10,15

fmol = fmol(P) "inspired" by Blitz, Rosolowsky+ works (calibrated with **LOCAL** observations)

Alternatively, fmol = fmol(Z , Σ) Krumholz+ theoretical works **ORIGINAL MUPPI**

Murante+10,15

A Visual Inspection: we run 5 boxes like this:

"Calibration Quantities"

"Predicted Quantities": Dust Mass Functions

Accurately probing redshifts $z = 1$ and $z = 2$ presents some challenges:

- Observations lack coverage of the small dust masses range that our simulations do sample. - Conversely, the limited volume of our simulations could lead to an inability to capture the high masses observed in real data, consequently resulting in an under-prediction at the highest dust mass bin.

Cosmic **Density** Decarli et al. (2019) found that the decline of pH2 by a factor of approximately 6 from its peak at z ∼ 1.5 to the present would reduce to a factor 3 if they had halved the CO-to-H2 conversion factor for a galaxies at z>1

"Predicted Quantities": the Main Sequence

Popesso+23

Observational Compilation since 2014

Illustris-TNG 300

- Median
- \triangle Donnari+19 limited to UVJ selected galaxies

Solid black line: Popesso+23: The MS bends at high masses.

Green dots: Model Main Sequence We reproduce the MS bending

"Predicted Quantities": H_2 scaling relation & the Main Sequence

The Molecular Kennicutt-Schmidt Relation

Astronomers have been exploring scaling relationships between gas and star formation since Schmidt's work in 1959. The question remains: which gas surface density should be employed?

Wong &Blitz (2002), Kennicutt et al. (2007), Bigiel et al. (2008), Leroy et al. (2008), Wilson et al. (2008), Blanc et al. (2009), Bigiel et al. (2011), de los Reyes & Kennicutt (2019)...

 $H₂$ is NOT directly observed! (estimated from CO or dust)

log Σ_{mol} [M_o pc⁻²]

 $H₂$ is NOT directly observed! (estimated from CO or dust)

The Molecular Kennicutt-Schmidt Relation

- \triangledown The integrated molecular Kennicutt-Schmidt relation is evident in our model galaxies as early as redshift 2, although with a higher normalization than at redshift 0.
- \blacktriangleright The slope remains close to unity across the examined redshifts for surf densities below $\Sigma_{\text{H2}} \sim 5 \text{ M}_\odot/\text{pc}^2...$
- \blacktriangleright However, at higher surface densities, we observe a steeper slope.

The Molecular Kennicutt-Schmidt Relation

Summary

- In the Universe, Star Formation, Dust pollution and Molecular Gas are intertwined. Now also in these simulations
- MUPPI Star Formation law is now linked to the dust-promoted H₂ content, **which in turn is produced from stellar ejecta and evolves in the ISM**
- We find good agreement with several observational constraints in the range $0 <$ $7 < 2$
- The integrated molecular Kennicutt-Schmidt relation emerges as early as redshift z ~ 2, although with a higher normalization than at z=0.
- Can we improve prescriptions to estimate molecular mass in galaxy formation models, when dust and/or H2 modeling is not performed

cinthia.ragone@unc.edu.ar