

Gsterreichischer Wissenschaftsfond

Tidal Stripping and the fate of dark substructures of the Milky Way

> Jens Stücker Feb. 19 2025 Dynamical DM tracers meeting

LCDM predicts structure on a vast range of scales

Aquarius Simulations (Springel et al 2008)

Haloes may exist as small as Earth masses

Haloes may exist as small as Earth masses

 Δ (k) = d σ^2 / dln k

Constraining the Nature of DM

- Galaxies form only in DM haloes $\gtrsim 10^{9} M_{\odot}$
- The presence of (lower mass) dark haloes is very sensitive to the nature of dark matter
- Finding or disproving their presence is a powerful probe of DM

How can we find dark substructures?

Example 1: Gravitational Lensing

Vegetti et al (2010) / Lin et al. (2009)

How can we find dark substructures?

Example 1: Gravitational Lensing

Vegetti et al (2010) / Lin et al. (2009)

Example 2: Gaps in stellar streams

Bonaca & Price-Whelan (2024)

Both methods may probe dark matter substructures as small as M ~ $10^6 M_{\odot}$

Constraining the Nature of DM through substructure

Observations

- The smallest galaxies
- Gaps in Stellar Streams
- Perturbations in gravitational lenses
- Dark Matter self-annihilation

• .

Predictions of subhalo abundance (and properties)

- Cosmological simulations
- Idealized simulations
- Analytical tools

. This Talk

Constraints on the Nature of DM

Predictions of the abundance of haloes

Haloes and the Nature of Dark Matter

(Most DM models can be captured by a the scale and the sharpness of the cut-off)

Stücker et al. (2021)

Haloes and the Nature of Dark Matter

Varying the scale of the cut-off

Varying the sharpness of the cut-off

Stücker et al. (2021)

Haloes vs. Subhaloes

field haloes

Can we reliably predict the dark substructure with cosmological N-body simulations?

Tidal Stripping and mass loss

before M ~ $10^9 M_{\odot}$ after M ~ $10^8 M_{\odot}$ vs.

(This is a very moderate stripping scenario)

Is tidal stripping resolved in N-body simulations?

Aquarius Simulations (Springel et al 2008)

Is tidal stripping resolved in N-body simulations?

Errani et al. (2024)

At small radii (e.g. <~ 50 kpc) convergence is very tricky!

Disruption of dark matter substructure: fact or fiction?

Frank C van den Bosch 🖾, Go Ogiya, Oliver Hahn, Andreas Burkert

Monthly Notices of the Royal Astronomical Society, Volume 474, Issue 3, March 2018, Pages 3043-3066, https://doi.org/10.1093/mnras/stx2956 Published: 17 November 2017 Article history v

(See also)

Do N-body simulations have a realistic tidal field?

Baryons dominate the tides at r < 20kpc

Phat ELVIS simulation, Kelley et al. (2019)

Can we predict all of the dark substructure with cosmological N-body simulations?

Difficult, because of tidal stripping

- Requires extremely high resolution at small radii
- **Baryons** dominate the tidal field
- \Rightarrow Can't trust N-body results at r \leq 50 kpc
- → Theoretical understanding of tidal stripping is important
- → Analytical approaches desirable (for extrapolation and for corrections)

Why does tidal stripping happen?

The "boosted" potential

Full potential ϕ_{tot}

"Boosted" Potential φ_{boost}

The potential as the subhalo "experiences" it

$$\phi_{\text{boost}}(\mathbf{x}) = \phi_{\text{tot}}(\mathbf{x}) + \mathbf{a}_0 \mathbf{x}$$

Stücker, Busch & Angulo (2022)

The "boosted" potential

$$\phi_{\text{boost}}(\mathbf{x}) = \phi_{\text{tot}}(\mathbf{x}) + \mathbf{a}_0 \mathbf{x}$$

The potential as the subhalo "experiences" it

Stücker, Busch & Angulo (2022)

The tidal tensor

External Potential ϕ_{ext}

Expansion O(2)

$$\varphi_{\text{ext, O(2)}}(\mathbf{x}) = \varphi_0 - \mathbf{a}_0 \mathbf{x} - \frac{1}{2} \mathbf{x}^T \mathbf{T} \mathbf{x}$$

The tidal tensor

External Potential ϕ_{ext}

Expansion O(2)

 $\phi_{tid}(\mathbf{x}) = \phi_0 - a_0 \mathbf{x} - \frac{1}{2} \mathbf{x}^T \mathbf{T} \mathbf{x}$

The "distant-tide" approximation

$\overline{\phi}_{self}(\mathbf{x}) + \frac{1}{2} \mathbf{x}^{T} \mathbf{T} \mathbf{x}^{T}$

• In practice almost always accurate (roughly if $M_{sub} \lesssim 10^{-3} M_{host}$)

 \approx

• Implies mass-invariance of tidal stripping

The "distant-tide" view of tidal stripping

Particles move in the time-dependent potential landscape

$$\varphi(\mathbf{x}, t) = \varphi_{self}(\mathbf{x}, t) + \frac{1}{2} \mathbf{x}^{T} \mathbf{T}(t) \mathbf{x}$$

The subhalo's orbit and the host potential matter only as they determine the **"tidal history" T**(t)

$$\textbf{T}(t) = -\boldsymbol{\nabla} \otimes \boldsymbol{\nabla} \ \boldsymbol{\phi}_{ext} \left(\textbf{x}_{sub}(t) \right)$$

Why does tidal stripping happen?1) Tides create a saddle-point in the potential

- Often referred to as the "tidal radius" or "Jacobi radius"
- The saddle-point corresponds to a reduced escape energy level

Why does tidal stripping happen? 2) The time-dependent tidal field injects energy

in the impulsive limit: $\Delta \mathbf{v} = \int T(t) \mathbf{x} dt$

- Particles that are raised beyond the escape energy level will escape
- Side-note: This is only relevant when the tidal field changes quicker than the orbital time-scale of particles, otherwise the system is adiabatically-shielded

Why does tidal stripping happen? 3) Mass-loss facilitates further mass-loss

Examples of Tidal Histories

Circular Orbit

Examples of Tidal Histories

Circular Orbit

Non-Circular Orbit

Galactic Disk

Stellar Encounter

Adiabatic Limit

 $\phi_{
m sad}$ ΔE $M{\downarrow}M{\downarrow}$ *

Tidal Stripping in the Adiabatic Limit

Tidal Stripping in the Adiabatic Limit

- Start with system in equilibrium
- Increase a tidal field extremely slowly
- The system will react adiabatically

Tidal Stripping in the Adiabatic Limit

- Start with system in equilibrium
- Increase a tidal field extremely slowly
- The system will react adiabatically
- Further simplification: spherical tide T = diag($\lambda_r, \lambda_r, \lambda_r$)

Y,

 $J_r = \int v_r dr$

The **radial Action** is the enclosed area and it is conserved for adiabatic transitions

 $J_r = \int v_r dr$

The radial Action is the enclosed area and it is conserved for adiabatic transitions

$J_r = \int v_r dr$

The **radial Action** is the enclosed area and it is conserved for adiabatic transitions

Actions are conserved for adiabatic transitions

$$f(J,L) = \begin{cases} f_0(J,L) & \text{for bound orbits} \\ 0 & \text{for unbound orbits} \end{cases}$$

-> This allows to calculate the remnant analytically!

Predicted density profiles

Predicted Mass-loss of NFW Haloes

$$\lambda_{s} = \partial_{r} \phi_{NFW}(r_{s}) / r_{s}$$

Adiabatic Tides & Non-Circular Orbits

The tidal field at peri-center determines the asymptotic structure

Adiabatic Tides & Asymptotic Remnants

The effect of baryons

The halo I showed in the beginning

Outlook: A general analytical model of tidal stripping

predict

Initial Structure $\rho(r)$ e.g. NFW Halo, Prompt Cusp, Dwarf Galaxy, Globular Cluster ...

Tidal History T(t), e.g.

Circular orb.

Non-circ. orb.

Galactic Disk

...

Stellar Encounter

Remnant Structure (including phase space structure, mass-loss history, density profile, J-factors, ...)

Helps with:

- Understand tidal stripping
- Alleviate confusions about "disruption"
- Extrapolate simulations to unresolved regime
- Correct for baryonic effects

Will use for:

• Comprehensive predictions of substructure (all the way to Earth mass haloes)

Important for:

• DM. annihilation, Subhalo lensing, Stellar Streams...

Take-Away Points

- Detecting the presence or absence of dark substructure is a powerful probe of the nature of DM
- Most substructures are affected by tidal stripping
- Don't trust the substructure of your N-body simulation (at r < 50kpc for a Milky Way host)
 - Resolving tidal stripping requires large resolution
 - Baryons have a large impact on substructure
- New analytical approach for tidal stripping through conservation of actions
 - Allows to predict asymptotic remnants
 - NFW haloes don't 'disrupt'
 - Will be generalized to other scenarios

Interesting Developments

Stellar Streams & DM substructure in the Gaia Era

Artificial Fragmentation

Tidal Track

Stücker et al. (2023)

Mass independence of tidal stripping

Aguirre-Santaella et al. (2022)

The simplicity of Tidal Stripping

Polar opposite scenarios lead to similar remnants!!

Hypothesis: Tidal remnants relax adiabatically