GCE MODELS: FLUORINE AND OTHER **STRANGE ELEMENTS**

Donatella Romano (INAF, OAS Bologna)

SPA-OC Workshop – 26-28 March 2024, INAF-OAS Bologna

THE LITHIUM PUZZLE

- Sbordone+ 2010) VS A(⁷Li)_{P, th} ~ 2.7 dex (Pitrou+ 2018)
- Travaglio+ 2001; Grisoni+ 2019)
- Other pieces of the puzzle have to do with stellar evolution (opening Pandora's box...)

• Cosmological ⁷Li problem: A(⁷Li)_{P, obs} \sim 2.2 dex (Spite & Spite 1982; Bonifacio & Molaro 1997;

• Galactic ⁷Li problem: A(⁷Li)_{meteorites} ~ 3.3 dex (e.g., Lodders+ 2009). Several possible ⁷Li sources suggested in the literature and included in Galactic chemical evolution (GCE) models, with changing fortunes (D'Antona & Matteucci 1991; Matteucci+ 1995; Romano+ 1999, 2001, 2021;

THE EVOLVING PICTURE OF LITHIUM EVOLUTION

Rebolo, Molaro, Beckman (1988)

Fu, DR+ (2018) (see also Delgado Mena+ 2015; Guiglion+ 2016)

NEW FIELD AND OC STAR DATASETS FROM GES

- Based on the last internal data release (iDR6) of the Gaia-ESO Survey (GES; Gilmore+ 2022, Randich+ 2022
- Stellar parameters, $[\alpha/Fe]$ and ⁷Li abundances (1D, LTE) 'homogeneously' derived for ~1/3 of the targets (~10⁵ stars) observed with FLAMES-UVES ($R \simeq 47,000$; see Smiljanic+ 2014, Lanzafame+ 2015) and FLAMES-GIRAFFE ($R \approx 19,000$; see Gilmore+ 2022) in open clusters (OCs) and in the field
- Cross-match with Gaia EDR3 catalogue (Prusti+ 2016; Brown+2020): Ages computed using aussieq2 (Casali+ 2020) Orbital parameters computed using galpy (Bovy 2015)

https://github.com/spinastro/aussieq2

https://github.com/jobovy/galpy

NEW FIELD AND OC STAR DATASETS FROM GES

- Field star sample:
 - GES_FLD)
 - (II) non-members observed in OC fields
- - 0.25 dex
- dex < +0.5
- Quality cut (SNR \geq 50): 3210 stars left

(I) stars observed in GES fields (keywords GES_MW, GES_MW_BL, GES_K2, GES_CR in field)

• Selection on stellar parameters: $\delta T_{\rm eff} < 100$ K, $\delta \log(g) < 0.2$ dex, $\delta [Fe/H] < 0.15$ dex, $\delta A(Li) < 0.15$

• After removing giants: 6207 stars with 5300 < $T_{\rm eff}/K$ < 7000, 3.5 < log(g) < 4.6, -1.5 < [Fe/H]/

NEW FIELD AND OC STAR DATASETS FROM GES

• OC sample:

A(Li)_{max}.

• 26 OCs (out of 87) for which we could safely compute average maximum ⁷Li abundances

Jala<u>ES</u>

Figures from Randich+ (2022)

OPEN CLUSTER SAMPLE

Cluster	Ago	D	[E ₀ /U]	(Li)	# of store	
Cluster	Age	AGC		$A(LI)_{max}$	# OI Stars	
	[Gyr]	[kpc]	[dex]	[dex]		
$ ho { m Oph}^a$	0.003	7.88	(-0.265)	3.28 ± 0.13	25	30
Alessi 43	0.011	8.18	$+0.02 \pm 0.06$	3.27 ± 0.22	46	35
25 Ori ^b	0.013	8.31	(0.02)	3.18 ± 0.14	7	31
Collinder 17/	0.014	8.20	(0.02)	3.21 ± 0.15	64	35
NGC 2232	0.018	8.27	(0.005)	3.22 ± 0.11	14	
NGC 2547	0.032	8.05	(-0.055)	3.35 ± 0.10	8	
IC 4665	0.033	7.71	(0.00)	3.44 ± 0.10	5	
NGC 6405	0.035	7.54	(-0.01)	3.31 ± 0.08	7	
IC 2602	0.036	7.95	(-0.01)	3.31 ± 0.13	4	
Blanco 1	0.105	7.96	-0.12 ± 0.07	3.15 ± 0.04	7	
NGC 6067	0.126	6.16	$+0.03 \pm 0.05$	3.38 ± 0.09	15	
NGC 6709	0.190	7.22	-0.03 ± 0.06	3.31 ± 0.01	2	
NGC 2516	0.240	7.98	-0.04 ± 0.05	3.33 ± 0.07	3	
Berkeley 30	0.295	13.59	-0.15 ± 0.05	3.11 ± 0.17	14	
NGC 6705	0.309	6.02	$+0.02 \pm 0.01$	3.34 ± 0.02	7	
NGC 3532	0.398	7.85	-0.01 ± 0.05	3.25 ± 0.07	4	
NGC 6802	0.660	6.71	$+0.14 \pm 0.04$	3.32 ± 0.02	2	
NGC 2355	1.000	9.84	-0.07 ± 0.05	3.17 ± 0.09	6	
Berkeley 81	1.148	5.21	$+0.22 \pm 0.05$	3.39 ± 0.11	1	
Berkeley 73	1.413	14.97	-0.26 ± 0.05	3.16 ± 0.11	8	
Berkeley 44	1.445	6.58	$+0.22 \pm 0.05$	3.21 ± 0.10	9	
NGC 2158	1.549	13.18	-0.16 ± 0.05	3.19 ± 0.09	5	
Ruprecht 134	1.660	5.44	$+0.27 \pm 0.05$	3.47 ± 0.04	8	
NGC 2420	1.738	10.49	-0.16 ± 0.05	3.19 ± 0.07	22	
Trumpler 20	1.862	6.82	$+0.13 \pm 0.04$	3.29 ± 0.12	7	
NGC 2243	4.365	11.00	-0.44 ± 0.05	2.94 ± 0.10	7	

```
T_{\rm eff} range
          [K]
06–4536 (pre-main sequence)
513–5135 (pre-main sequence)
19–3386 (pre-main sequence)
515–4441 (pre-main sequence)
   5031–6891 (young)
   5748–6286 (young)
   5674–6133 (young)
       5848-6419
   5766–6438 (young)
   5923–6476 (young)
       6518-8000
       6628-7410
       6531-6839
       6630-6980
       6673-6984
       6825-6865
       6677-6919
       6716-6975
         6836
       6721-6885
       6564-6761
       6585-6889
       6697-6879
  6378–6769 (turn-off)
       6700-6928
6064–6314 (post turn-off)
```

- Ages from young to relatively old
- Large galactocentric distance baseline
- For each cluster, only members that suffered minimal lithium depletion are selected to compute A(Li)_{max}

Romano+ (2021)

OPEN CLUSTER SAMPLE

- For clusters older than 100 Myr we use stars on the blue (warm) side of the Li dip (Boesgaard & Tripicco 1986)
- Solution: NGC 2243 (age = 4.4 Gyr)

OPEN CLUSTER SAMPLE

Jeffries+ (2009)

- ✓ Cluster younger than 100 Myr host pre-main sequence or zero age main-sequence stars. ⁷Li depletion may show up in cool members of clusters as young as 5 Myr (Bouvier+ 2016; Jeffries+ 2021) → use only stars that trace the upper envelope of the A(Li)—T_{eff} distribution in clusters sampled well enough
- Metallicity and rotation effects!

FIELD STAR SAMPLE

Romano+ (2021)

 $T_{eff}[K]$

- Nucleosynthesis prescriptions (Romano+ 2019b, 2021):
 - 2018, 2020)
 - & Weaver (1995)
 - \Rightarrow For SNeIa: yields from Iwamoto+ (1999)
 - \approx Empirical ⁷Li production from novae after Izzo+ (2015)
 - \approx ⁷Li production from GCR spallation after Lemoine+ (1998)

 \Rightarrow For low- and intermediate-mass stars (1–9 M_{\odot}, including super-AGBs): yields from Ventura+ (2013, 2014,

 \Rightarrow For CCSNe (13–100 M_o): yields from Limongi & Chieffi (2018) + (halved) v-process ⁷Li yields from Woosley

SOLAR NEIGHBOURHOOD

A(Li) [dex]

DISC GRADIENT

Romano+ (2021)

IMPLICATION: HIGHER MASSES OF NOVA PROGENITORS

- Nucleosynthesis prescriptions:
 - ☆ Left panels: yields from Karakas (2010); Kobayashi+(2006); Meynet & Maeder (2002)
 - Right panels: yields from FRUITY (Cristallo+ 2009, 2011, 2015); Monash (Lugaro+ 2012; Fishlock+ 2014; Karakas & Lugaro 2016; Karakas+ 2018); Limongi & Chieffi (2018)

Bijavara Seshashayana+ (2024)

- Nucleosynthesis prescriptions:
 - \Rightarrow Yields from FRUITY (Cristallo+ 2009, 2011, 2015); Monash (Lugaro+ 2012; Fishlock+ 2014; Karakas & Lugaro 2016; Karakas+ 2018); Limongi & Chieffi (2018)

Bijavara Seshashayana+ (2024)

PHOSPHORUS

- * Observe P-bearing molecules across the Galactic disc, 0-22 kpc (with L. Colzi & V. Rivilla)
- * Stellar abundances (SPA-OC?). PI NIR lines @ ~1050 nm or UV lines @ ~213 nm (from space)
- # GCE models exploring different grids of stellar yields

Romano+ (in prep.)

disc, 0-22 kpc (with L. Colzi & V. Rivilla) 050 nm or UV lines @ ~213 nm (from space) lds

Caffau+ (2016)

