## **STELLAR HELIUM: IMPACT ON IMF AND HOW TO MEASURE IT**



#### Xiaoting FU 符晓婷

Purple Mountain Observatory Chinese Academy of Sciences

xiaoting.fu@pmo.ac.cn

## **STELLAR HELIUM**: **IMPACT ON IMF AND HOW TO MEASURE IT**

# What is stellar helium content

Impact on IMF determinations

How to measure it





hydrogen fusion 4<sup>1</sup>H -> <sup>4</sup>He + energy



#### **P-P** chain



#### **CNO cycle**

hydrogen fusion 4<sup>1</sup>H -> <sup>4</sup>He + energy



#### **P-P** chain



#### **CNO cycle**

#### Mass fraction

#### X + Y + Z = 1

hydrogen helium metal

#### Mass fraction

#### X + Y + Z = 1

hydrogen helium metal

#### Solar value in PARSEC: X= 0.7363, Y=0.2485, Z= 0.01524

What is the helium content in other stars?

### Mass fraction X + Y + Z = 1hydrogen helium metal Solar value in PARSEC: X= 0.7363, Y=0.2485, Z= 0.01524

What is the helium content in other stars?



The default helium to metal enrichment law:

$$Y = Y_P + \frac{\Delta Y}{\Delta Z} Z$$

The default helium to metal enrichment law:

What is the helium enrichment What is the helium scatter



# at different metallicity?

What is the helium enrichment What is the helium scatter



Bragaglia et al., 2010a

#### m enrichment at different metallicity? m scatter

#### example in MW

Very similar metallicity, different He contents

He-rich population is hotter

Usually associate with the 2nd pop of GC N-rich, Na-rich



Bragaglia et al., 2010b

# at different metallicity?

#### example in MW

**Globular Clusters** 

Very similar metallicity, different He contents

He-rich population is hotter

Usually associate with the 2nd pop of GC N-rich, Na-rich

#### What is the helium enrichment at different metallicity? What is the helium scatter



#### example in high redshift

GN-z11

N-rich, compact z = 10.6 galaxy

very similar to the 2nd pop of GC

What is the helium enrichment What is the helium scatter



How to make such a N-rich galaxy? Charbonnel et al., 2023: Super massive stars of ~10000 M☉

# at different metallicity?

#### example in high redshift

#### **GN-z11**

N-rich, compact z = 10.6 galaxy

very similar to the 2nd pop of GC

D'Antona et al., 2023:

Kobayashi et al., 2023:

massive (4–7.5 M $\odot$ ) AGBs

Two star bursts + rotating WR stars to  $120M\odot$ 



What is the helium enrichment What is the helium scatter



How to make such a N-rich galaxy? Charbonnel et al., 2023: Super massive stars of ~10000 M☉

# at different metallicity?

D'Antona et al., 2023:

Kobayashi et al., 2023:

massive (4–7.5 M $\odot$ ) AGBs

Two star bursts + rotating WR stars to  $120M\odot$ 





What do stellar models say about He-rich?

**He-rich** stars:

hotter, brighter, evolve faster



Fu, PhD. Thesis

What do stellar models say about He-rich?

**He-rich** stars:

hotter, brighter, evolve faster



What do stellar models say about He-rich?

**He-rich** stars:

hotter, brighter, evolve faster

Huge effect on chemical evolution in galaxy (WHEN? HOW? WHICH stellar mass?)



What do stellar models say about He-rich?

**He-rich** stars:

hotter, brighter, evolve faster

## Impact on IMF ?









He-rich star has smaller mass at the same luminosity













mass

#### He-rich star has smaller mass at the same magnitude

Even a small He-enrichment <u>Changes the M-L relation</u>



| 0 | )<br>)<br>) | • | 222  | 5<br>7<br>7 | ( | 666 | · · · · · · · · · · · · · · · · · · · | <br> |  |
|---|-------------|---|------|-------------|---|-----|---------------------------------------|------|--|
|   |             |   | <br> | <br>        |   |     |                                       | <br> |  |
|   |             |   | <br> | <br>        |   |     |                                       | <br> |  |
|   |             |   | <br> | <br>        |   |     |                                       | <br> |  |
|   |             |   |      |             |   |     |                                       | <br> |  |



same IMF

If the He-rich population is not considered one may end with more higher mass stars

### ▶How to measure it ?

He-rich star has smaller mass at the same magnitude



Even a small He-enrichment

**Changes the M-L relation** 

![](_page_23_Picture_9.jpeg)

| 0 | )<br>)<br>) | • | 222  | 5<br>7<br>7 | ( | 666 | · · · · · · · · · · · · · · · · · · · | <br> |  |
|---|-------------|---|------|-------------|---|-----|---------------------------------------|------|--|
|   |             |   | <br> | <br>        |   |     |                                       | <br> |  |
|   |             |   | <br> | <br>        |   |     |                                       | <br> |  |
|   |             |   | <br> | <br>        |   |     |                                       | <br> |  |
|   |             |   |      |             |   |     |                                       | <br> |  |

![](_page_23_Picture_11.jpeg)

- The splitting on sequences in CMD both of GC in Milky Way (e.g. Bedin et al., 2004; Villanova et al., 2007; Piotto et al., 2007; Milone et al., 2008; Di Criscienzo et al., 2010) and in Magellanic Cloud clusters;
- Brightness of the RGB bump (Bragaglia et al., 2010)
- Seismology result (Bragaglia et al., 2010)

Pasquini et al., 2011);

![](_page_24_Picture_6.jpeg)

• Direct He I measurement hot blue horizontal branch star (e.g. Villanova, Piotto & Gratton, 2009; Mucciarelli et al., 2014; Marino et al., 2014; Gratton et al., 2015), **On giant stars** (Dupree, Strader & Smith, 2011;

![](_page_24_Picture_12.jpeg)

![](_page_24_Picture_13.jpeg)

![](_page_24_Picture_14.jpeg)

![](_page_24_Picture_15.jpeg)

![](_page_24_Picture_16.jpeg)

![](_page_24_Picture_17.jpeg)

![](_page_24_Picture_18.jpeg)

![](_page_24_Picture_19.jpeg)

![](_page_24_Picture_20.jpeg)

![](_page_24_Picture_21.jpeg)

- Piotto et al., 2007; Milone et al., 2008; Di Criscienzo et a
- Brightness of the RGB bump (Bragaglia et al., 2010)
- Seismology result (Bragaglia et al., 2010)
- Direct He I measurement hot blue horizontal branch star (

Mucciarelli et al., 2014; Marino et al., 2014; Gratton et al., 2015), on giant stars Pasquini et al., 2011);

![](_page_25_Picture_6.jpeg)

#### The splitting on sequences in CMD both of GC in Milky Way (e.g. Bedin et al., 2004; Villanova et al., 2007;

CMD gellanic Cloud clusters; Indirect

Long-term seismology data Indirect

Photosphere EP > 20 eV; Teff > 10000 K

![](_page_25_Picture_16.jpeg)

![](_page_26_Figure_1.jpeg)

#### He line at 10830Å

**For lower temperature stars** 

10830Å triplet series:  $2s^{3}S \rightarrow 2p^{3}P_{0} (\lambda = 10\,829.09\,\text{\AA}),$  $2s^{3}S \rightarrow 2p^{3}P_{1} (\lambda = 10\,830.25\,\text{\AA}),$  $2s^{3}S \rightarrow 2p^{3}P_{2} (\lambda = 10\,830.34\,\text{\AA}).$ 

formed in the upper chromosphere.

![](_page_26_Picture_7.jpeg)

![](_page_26_Picture_8.jpeg)

![](_page_27_Figure_1.jpeg)

#### He line at 10830Å

**For lower temperature stars** 

10830Å triplet series:  $2s^{3}S \rightarrow 2p^{3}P_{0} (\lambda = 10\,829.09\,\text{\AA}),$  $2s^{3}S \rightarrow 2p^{3}P_{1} (\lambda = 10\,830.25\,\text{\AA}),$  $2s^{3}S \rightarrow 2p^{3}P_{2} (\lambda = 10830.34 \text{ Å}).$ 

formed in the upper chromosphere.

Solar atmosphere, Avrett & Loeser 1992

-10

log ρ (g cm<sup>-3</sup>)

![](_page_27_Picture_7.jpeg)

![](_page_27_Picture_8.jpeg)

#### Stellar population astrophysics (SPA) with the TNG: Measurement of the He $_10830$ Å line in the open cluster Stock 2 $\star$

Mingjie Jian (简明杰)<sup>1,2</sup>, Xiaoting Fu (符晓婷)<sup>3,4</sup>, Noriyuki Matsunaga (松永典之)<sup>2</sup>, Valentina D'Orazi<sup>5,6</sup>, Angela Bragaglia<sup>4</sup>, Daisuke Taniguchi (谷口大輔)<sup>7</sup>, Min Fang (房敏)<sup>3</sup>, Nicoletta Sanna<sup>8</sup>, Sara Lucatello<sup>6</sup>, Antonio Frasca<sup>9</sup>, Javier Alonso-Santiago<sup>9</sup>, Giovanni Catanzaro<sup>9</sup>, and Ernesto Oliva<sup>8</sup>

- <sup>1</sup> Department of Astronomy, Stockholm University, AlbaNova University centre, Roslagstullsbacken 21, 114 21 Stockholm, Sweden e-mail: mingjie.jian@astro.su.se
- <sup>2</sup> Department of Astronomy, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- <sup>3</sup> Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210023, China e-mail: xiaoting.fu@pmo.ac.cn
- <sup>4</sup> INAF Osservatorio di Astrofisica e Scienza dello Spazio di Bologna, via P. Gobetti 93/3, 40129 Bologna, Italy
  <sup>5</sup> Department of Physics, University of Rome Tor Vergata, via della Ricerca Scientifica 1, 00133, Rome, Italy
- <sup>6</sup> INAF Osservatorio Astronomico di Padova, Vicolo dell' Osservatorio 5, 35122 Padova, Italy
- <sup>7</sup> National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan
- <sup>8</sup> INAF Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125 Firenze, Italy
- <sup>9</sup> INAF–Osservatorio Astrofisico di Catania, via S. Sofia 78, 95123 Catania, Italy

Red Clump stars in open cluster:

Single stellar population, known age, known distance

Low mass loss, constant surface helium

![](_page_28_Figure_16.jpeg)

![](_page_29_Figure_1.jpeg)

![](_page_29_Figure_2.jpeg)

Constrain stellar activity impact

![](_page_29_Figure_4.jpeg)

![](_page_30_Picture_0.jpeg)

#### We have **20 more clusters** with **GIARPS** @ TNG: !

#### Covering different locations in MW

#### The He-Ca(HK) slope is an indicator of the He abundance

![](_page_30_Figure_4.jpeg)

optical

NIR

![](_page_30_Figure_6.jpeg)

![](_page_30_Figure_7.jpeg)

#### We have 20 more clusters with GIARPS @ TNG: 1

#### Covering different locations in MW

![](_page_31_Picture_3.jpeg)

![](_page_31_Picture_4.jpeg)

![](_page_31_Figure_5.jpeg)

#### Chinese Space Station Telescope

![](_page_31_Picture_7.jpeg)

reaching g=27.5 mag

![](_page_32_Picture_0.jpeg)

#### **SSP & GCE** with He-rich stellar population

![](_page_32_Picture_3.jpeg)

![](_page_32_Picture_4.jpeg)

![](_page_32_Picture_5.jpeg)