SPA - not only clusters

Nagaraj Vernekar Supervisor : Dr. Sara Lucatello University of Padova, INAF-OAPd

Università degli Studi di Padova

Traditional Archaeology:

- Study of fossilized records
- Understand history of our planet, civilisation and animal evolution

© Budimir Jevtic

Traditional Archaeology:

- Study of fossilized records
- Understand history of our planet, civilisation and animal evolution

Similarly, in astronomy we have:

Galactic Archaeology:

- Formation and evolution of Milky way
- Stellar properties and chemical compositions

Nick Risinger

Stellar ages:

- Stellar age Important parameter
- Usual technique Isochrone fitting
- Works well for clusters

© ESA/Gaia/DPAC

Stellar ages:

- Stellar age Important parameter
- Usual technique Isochrone fitting
- Works well for clusters

Determination of ages for field stars is not trivial

© ESA/Gaia/DPAC

Stellar ages:

- Stellar age Important parameter
- Usual technique Isochrone fitting
- Works well for clusters

Determination of ages for field stars is not trivial

Asteroseismology

© ESA/Gaia/DPAC

Asteroseismology:

- Study of stellar oscillations \bigcirc
- Large amount of high precision space photometry
 - Kepler 0
 - TESS 0
 - Plato (upcoming) 0

Asteroseismology:

- Study of stellar oscillations
- Large amount of high precision space photometry
 - Kepler
 - TESS
 - Plato (upcoming)
- Oscillations probe the interior
- Observation with models = parameters

Asteroseismology:

- Study of stellar oscillations
- Large amount of high precision space photometry
 - Kepler
 - TESS
 - Plato (upcoming)
- Oscillations probe the interior
- Observation with models = parameters
- Scaling relations

$$\frac{\tau}{\tau_{\ell}} = \left(\frac{\nu_{\max}}{\nu_{\max,\ell}}\right)^{\alpha} \left(\frac{\Delta\nu}{\Delta\nu_{\ell}}\right)^{\beta} \left(\frac{T_{\text{eff}}}{T_{\text{eff},\ell}}\right)^{\gamma} \exp\left([\text{Fe/H}]\right)^{\delta}$$

Asteroseismology:

- Study of stellar oscillations
- Large amount of high precision space photometry
 - Kepler
 - TESS
 - Plato (upcoming)
- Oscillations probe the interior
- Observation with models = parameters
- Scaling relations

Observables (photometry)

$\frac{\tau}{\tau_{\ast}} = \left(\frac{\nu_{\max}}{\nu_{\max,\ast}}\right)^{\alpha} \left(\frac{\Delta\nu}{\Delta\nu_{\ast}}\right)^{\beta} \left(\frac{T_{\text{eff}}}{T_{\text{eff},\ast}}\right)^{\gamma} \exp\left([\text{Fe/H}]\right)^{\delta}$

Requires prior information of Teff and [Fe/H]

Bellinger (2020)

Asteroseismology:

- Study of stellar oscillations
- Large amount of high precision space photometry
 - Kepler
 - TESS
 - Plato (upcoming)
- Oscillations probe the interior
- Observation with models = parameters
- Scaling relations

Observables (photometry)

$\frac{\tau}{\tau_{\ast}} = \left(\frac{\nu_{\max}}{\nu_{\max,\ast}}\right)^{\alpha} \left(\frac{\Delta\nu}{\Delta\nu_{\ast}}\right)^{\beta} \left(\frac{T_{\text{eff}}}{T_{\text{eff},\ast}}\right)^{\gamma} \exp\left([\text{Fe/H}]\right)^{\delta}$

Requires prior information of Teff and [Fe/H]

In this work, we combine asteroseismology with high-resolution spectroscopy

Bellinger (2020)

Observation

Sample:

- 16 stars (lower RGB and red clump)
- Nearby and within K2 fov
- Field stars (Gaia info and color indices)
- Homogeneous and warm

CMD of the sample

Observation

Sample:

- 16 stars (lower RGB and red clump)
- Nearby and within K2 fov
- Field stars (Gaia info and color indices)
- Homogeneous and warm

Data:

- Optical and IR spectrum from TNG
- Optical: 3800 6900 A and R = 140000
- IR: 9700 24000 A and R = 50000
- SNR > 100 (some > 300)

CMD of the sample

Comparison of radial velocities

13

Stellar parameters:

- Excitation equilibrium of Fe lines
- Initial guesses:
 - Teff : Photometric colors
 - log(g): Isochrone (0.5 Gyr, -0.1dex)
 Bressan et al. (2012)

Sousa et al. (2007)

Mucciarelli & Bellazzini (2020)

- [Fe/H] : 0.1 dex
- Vmic : 1.5 km/s
- EW from ARES

Comparison of effective temperatures

Stellar parameters:

- Excitation equilibrium of Fe lines
- Initial guesses:
 - Teff : Photometric colors
 - log(g) : Isochrone (0.5 Gyr, -0.1dex)
 - [Fe/H] : 0.1 dex
 - **Vmic** : 1.5 km/s
- EW from ARES
- PyMOOGi (abfind driver)
- Validation:
 - O Arcturus Ramirez & Allende Prieto (2011)
 - Q2 analysis
 - Ramirez et al. (2014)

Sneden (1973)

Kiel diagram

Stellar parameters:

- Excitation equilibrium of Fe lines
- Initial guesses:
 - Teff : Photometric colors
 - log(g) : Isochrone (0.5 Gyr, -0.1dex)

Gaia Collaboration (2022) Hardegree-Ullman et al (2020) Jonsson et al. (2020) Ting et al. (2018)

- [Fe/H] : 0.1 dex
- Vmic : 1.5 km/s
- EW from ARES
- PyMOOGi (abfind driver)
- Validation:
 - Arcturus
 - Q2 analysis

Consistent with literature, Gaia, Apogee and Lamost

Comparison of stellar parameters

16

Abundance analysis:

- Affected by evolution : CNO, Li, and ¹²C/¹³C
- Chemical Mixing : ↑N and ↓C
- Lithium:
 - Extremely sensitive to Teff
 - A(Li) depends on age and mass
 - \circ \downarrow as star ascends RGB (mixing)
- α-, Fe-peak elements and Fluorine

Abundance analysis:

- Affected by evolution : CNO, Li, and ¹²C/¹³C
- Chemical Mixing : ↑N and ↓C
- Lithium:
 - Extremely sensitive to Teff
 - A(Li) depends on age and mass
 - ↓ as star ascends RGB (mixing)
- α-, Fe-peak elements and Fluorine
- PyMOOGi used:
 - EW method (α and Fe-peak)
 - Synthetic spectrum fitting (CNO, Li, F)

Fitting of CH (top) and CO (bottom) molecular bands

Abundance analysis:

- → Carbon, Nitrogen and Oxygen:
 - C from CH (4300 A) and CO (23000 A)
 - N from CN (5100 A and 15000 A)
 - O from forbidden lines (6300 and 6363 A) and OH (23000 A)

Abundance analysis:

- → Carbon, Nitrogen and Oxygen:
 - C from CH (4300 A) and CO (23000 A)
 - N from CN (5100 A and 15000 A)
 - O from forbidden lines (6300 and 6363 A) and OH (23000 A)
 - IR > optical
 - C and N are higher

Gratton et al. (2000)

Average abundance of C and N

Abundance analysis:

- → Carbon, Nitrogen and Oxygen:
 - C from CH (4300 A) and CO (23000 A)
 - N from CN (5100 A and 15000 A)
 - O from forbidden lines (6300 and 6363 A) and OH (23000 A)
 - IR > optical
 - C and N are higher
 - ¹²C/¹³C between 4 and 15

Average abundance of C and N

Abundance analysis:

→ Lithium:

- Stars being RGB weak lines expected
- 14 out of 16 stars upper limit on A(Li)
- HD 24680 Li rich giant (A(Li) = 1.46 + 0.20 dex)

Abundance analysis:

→ Lithium:

- Stars being RGB weak lines expected
- 14 out of 16 stars upper limit on A(Li)
- HD 24680 Li rich giant (A(Li) = 1.46 + 0.20 dex)
- HD24680 :
 - High Li and N
 - SB1 system
 - Elevated Y, Zr, La and Na
 - Marginal increment in Eu and Al

Abundance analysis:

\rightarrow Lithium:

- Stars being RGB weak lines expected
- 14 out of 16 stars upper limit on A(Li)
- HD 24680 Li rich giant (A(Li) = 1.46 + 0.20 dex)
- HD24680 :
 - High Li and N
 - SB1 system
 - Elevated Y, Zr, La and Na
 - Marginal increment in Eu and Al

Likely to be a product of mass transfer from low to intermediate mass AGB companion.

Abundance analysis:

- \rightarrow α and Fe-peak elements:
 - 14 of the 16 stars show super-solar ratios
 - Likely to be part of thin disk
 - 2 of them show sub-solar ratio
 - APOGEE offset difference in [Fe/H]

Abundances in comparison with Apogee

Abundance analysis:

- \rightarrow α and Fe-peak elements:
 - 14 of the 16 stars show super-solar ratios
 - Likely to be part of thin disk
 - 2 of them show sub-solar ratio
 - APOGEE offset difference in [Fe/H]
- → Fluorine:
 - Challenging to measure
 - Two measurements obtained

Fitting of HF line

Abundance analysis:

- α- and Fe-peak elements:
 - 14 of the 16 stars show super-solar ratios
 - Likely to be part of thin disk
 - 2 of them show sub-solar ratio
 - APOGEE offset difference in [Fe/H]

→ Fluorine:

- Challenging to measure
- Two measurements obtained

Metallicity vs Fluorine

Comparison of ages:

- Asteroseismic parameters from Reyes et. al (2022)
- Asteroseismic ages from scaling relations
- Theoretical ages also from MIST isochrones
- Ages from chemical clocks [Y/Mg] and [C/N]

Bellinger (2020) Dotter (2016)

> Berger et al. (2022), Casali et al. (2019)

Comparison of ages:

- Asteroseismic parameters from Reyes et. al (2022)
- Asteroseismic ages from scaling relations
- Theoretical ages also from MIST isochrones
- Ages from chemical clocks [Y/Mg] and [C/N]

Comparison of four sets of ages

Conclusion:

- Spectroscopic analysis on a sample of 16 nearby RGB stars
- Stellar properties derived confirm the evolutionary stages of the stars
- Abundance analysis CNO, Li, α- and Fe-peak, F and Y
- Some chemical peculiarities observed
- HD 24680 likely to be a post mass transfer Li rich giant
- Theoretical ages in good agreement with asteroseismic ages but not with chemical clocks of [C/N] and [Y/Mg]