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Introduction

The "Machine Learning for Adaptive Optics" Data Analysis Grant 2023, part of INAF's "astrofisica fondamentale" funding, 1s focused on 1dentifying machine learning techniques that can
make use of telemetry data streams from existing AO systems to improve the performance and/or optimize their behavior 1n different atmospheric conditions, but also leveraging machine
learning technique to speed up numerical simulations computation. The project 1s also aimed at the improvement of future AO systems. A key support to this activity is the availability of
large databases of telemetry data, such as those of SOUL at LBT and ERIS at VLT, collected during the commissioning carried out by INAF researchers. During the first year of activity we
were able to achieve 1mnitial encouraging results on simulated data with excellent theoretical performance. The grant was used to finance the purchase of a computing server, which i1s
necessary to provide the needed computational power, and the participation in two international conferences, SPIE in Yokohama and ML4ASTRO2 in Catania with one talk and the
publication of two papers. In this poster we briefly present the activity carried out for the grant, its current status and its goals.
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Goal of the project

The goal of the activity is to 1dentify machine learning techniques that can use telemetry data from existing AO assisted instruments to enhance the performance of future AO
systems. A key support to this activity 1s the availability of large databases of telemetry data such as those of SOUL at LBT and ERIS at VLT collected during the
commissioning carried out by INAF researchers.

Long-term objectives (within and beyond the grant)

1. Enhanced Optical Turbulence Prediction: enhance the previous results by using more complex ML algorithms and better training over the available databases.
2. Wavefront sensing: new ways to compute the slope of the wavefront sensor.
3. Turbulence reconstruction: reconstruction from the measurements of the WFES to the residual wavefront and then to the incoming turbulence.
4. New approaches to tomography reconstruction: tomographic turbulence reconstruction done by wide field adaptive optics systems.
5. Short time scale prediction of turbulence: reduce wind driven halo 1n the PSF and improve vibration mitigation.
6. Optimization of temporal controllers: optimization of the temporal controlleras a function of the observing conditions.
7. PSF fitting and reconstruction: enhance the data reduction pipelines of with PSF reconstruction using ML on the databases of on-sky PSFs.
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