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Abstract

We give a brief account of the problem of the Global Astrometric Sphere Reconstruc-

tion in Astrometry, with particular reference to the Gaia and Gaia-like astrometric mis-

sions. In particular, we stress the need forHPC to solve the linearized equation system

of the size that is brought about bymodern space astrometry missions. The difference

between the two different implementation of the Gaia mission is illustrated, with spe-

cific reference to the problems of the covariance estimation, and we show how the

latter have recently been implemented in the GSR pipeline of Gaia.

The Gaia mission

Building on the legacy of the Hipparcos satellite, Gaia implements an approach to global

and absolute astrometryvia a two-way telescope doingmeasurements in scanningmode.

The entire celestial sphere is observed every 6 months thanks to a scanning law that

combines three independent motions: the spin of the satellite, the precession of the

spin axis around the Sun-Earth direction, and the orbital motion of the satellite. The

CCDs on the focal plane operate in TDI mode.

Figure 1. The Gaia scanning strategy.

The linearized equation system

Each star is observed in one of the two fields of view (FoV1 or 2) separated by a large

Basic Angle (Γ). This observation is modelled into a linearized equation, function of up to
24 unknowns pertaining to different classes: Source, Attitude, Calibration, and Global.
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Gaia collects a few 09 observations of up to 108 primary sources over a mission duration

of about 10 years. Each source brings 5 astrometric unknowns, while the those of the

other classes can be up to a few 107. This produces a sparse and overdetermined linear

equation system b = Axwhose design matrixA hasm ∼ 109−1010 rows and n ∼ 5×108

columns. Such a size calls for a parallelized implementation of the solution algorithm,

and an adequate HPC machine.
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Figure 2. The Gaia observables and the structure of the matrix A of the linearized equation system.

Algorithms for the solution of the equation system

A typical system of equations for the full mission will require about 40 TB RAM and, if

solved with direct methods 1026 FLOPs, a task unfeasible even with the largest super-
computers available. The problem of the Global Astrometric Sphere Reconstruction thus

resorts to iterative algorithms. Gaia currently uses two different approaches: a block-

iterative algorithm, implemented in the AGIS pipeline (Lindegren et al., 2012) and a fully

iterative algorithm based on a customized version of LSQR (Paige and Saunders, 1982)

implemented in the GSR pipeline.

Figure 3. The two approaches adopted for solving the linear equation system.

The block-iterative approach adopted by AGIS allows a simpler implementation, which

is essentially embarassingly parallel. This is not possible for the fully iterative algorithm,

which requires a more sophisticated approach (Becciani et al., 2014) but, on the other

side, allows the estimation of the full variance-covariance matrix (Kostina et al., 2009).

Estimation of the variance-covariance matrix in GSR

The covariances are iteratively computed with the LSQR algorithm (Kostina et al., 2009):

Covitn[j]+ = factoritn · xitn[j1] · xitn[j2],

where itn is the index of the LSQR iteration, ~Cov is the 1D double-precision array of
the covariances, j is an index that goes from 0 to Ncov − 1, and (j1,j2) are the couples of

indexes of the unknowns ~x between which we have to compute the covariances.
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Figure 4. Tests to measure the performance of the different sections of the LSQR + covariances pipeline.
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