INAF ISTITUTO NAZIONALE **DI ASTROFISICA** 

#### 2° Forum della Ricerca Sperimentale e Tecnologica

# NEW HOLO LAB: TOWARDS LARGE SIZE ASTRONOMICAL VPHGs

Michele Frangiamore, Manuela Arnò, Andrea Bianco INAF - Osservatorio Astronomico di Brera - Merate



| Name                           | Big writing Setup                                 | Small writing Setup                                       |
|--------------------------------|---------------------------------------------------|-----------------------------------------------------------|
| Laser source                   | 3W @633nm - fringlocking Interstage pickoff @1064 | 0.5W @409nm - 532nm - 660nm                               |
| Line density achievable [l/mm] | (150 @2° upgrade, 245 @1° upgrade) 300 - 3500     | 150 - 3500                                                |
| Max CA dimension [mm]          | 450 (for not dispercing direction)                | 190 (for not dispercing direction)                        |
| TWE                            | 1 $\lambda$ PtV over 450mm (to be tested)         | 1 $\lambda$ PtV over 190mm ( $\lambda$ /4 PtV over 190mm) |
| Optical Bench length [mm]      | 7200 + (2000/3000)                                | 2500                                                      |
| Achievable Design              | VPHG, GRISM, Dual Ord, Multiplexed, Patched       |                                                           |

requirements.

The characterization of VPHGs, and **GRISMs** involves precise measurement of optical properties such as transparency, diffraction efficiency (DE), line density. A robust and flexible setup and developed by the Holography Team at OABr, performs these measurements with high accuracy across UV-VIS-NIR-SWIR bands, essential for many international projects such as BlueMuse<sup>1</sup>, Weave<sup>2</sup>, FORS-Up<sup>3</sup>, and MAVIS<sup>4</sup>.

| Name                        |                                 |  |
|-----------------------------|---------------------------------|--|
|                             | Light Source Property           |  |
| Monochromatic Source [nm]   | 300 - 2500                      |  |
| Monocromator bandwidth [nm] | 1.7 - 7                         |  |
| Laser source [nm]           | 409 - 532 - 632.8 - 1550        |  |
| Beam size [mm]              | 1 - 15                          |  |
| Polarization selector       | TE - TM - Continuos             |  |
|                             | Accuracy                        |  |
| Angolar resolution [mdeg]   | 20 (5 in HR mode)               |  |
| Spatial X-Y resolution [mm] | 0.1                             |  |
| Line density accuracy [%]   | 0.1                             |  |
| Efficiency accuracy [%]     | 0.5 - 3                         |  |
|                             | Geometrical Property            |  |
| Max sample dimension [mm]   | 200 x 250 (Big version 600x500) |  |
| Max Load [Kg]               | 8 (50 for Big version )         |  |
|                             |                                 |  |



### CONCLUSION

- 1. INAF-OABr aims to ensure Europe's leadership in this strategic field and support the development of cutting-edge astronomical technologies.
- 2. Key activities include the implementation of the large-size VPHG laboratory, development of highperformance photopolymers in collaboration with industry partners.
- 3. The new laboratory will provide a state-of-the-art facility for researchers to spearhead the next phase of technological advancement in these optical elements.

# REFERENCES

- 1. R. Johan (2019), arXiv:1906.01657.
- 2. A. Bianco (2018), Proc. SPIE 10706, 107064X.
- 3. M. Frangiamore (2022), Proc. SPIE 12188, V, 1218852.
- 4. R. François (2020), Proc. SPIE, Volume 11447, id. 114471R 16 pp

## CORRESPONDENCES

andrea.bianco@inaf.it michele.frangiamore@inaf.it manuela.arno@inaf.it



http://www.brera.inaf.it/vphg-brera/index.html

