Deriving Stellar Parameters with Asteroseismology

MWGaiaDN School Frontiers of Stellar Evolution

Università degli Studi di Padova How accurate is our measures of global stellar properties when we use seismic constrains?

Seismic Parameters

Δv : large separation

 V_{max} : frequency of the maximum oscillation power

$$\Delta \nu = \Delta \nu_{\odot} \sqrt{\frac{M}{R^3}}$$
$$\nu_{\rm max} = \nu_{\rm max,\odot} \frac{M}{R^2 \sqrt{T_{\rm eff}}}$$

DIRECT METHOD

Inverting the scaling relations

$$\frac{M}{M_{\odot}} = \left(\frac{\nu_{\max}}{\nu_{\max,\odot}}\right)^{3} \left(\frac{\Delta\nu}{\Delta\nu_{\odot}}\right)^{-4} \left(\frac{T_{\text{eff}}}{T_{\text{eff},\odot}}\right)^{3/2}$$
$$\frac{R}{R_{\odot}} = \left(\frac{\nu_{\max}}{\nu_{\max,\odot}}\right) \left(\frac{\Delta\nu}{\Delta\nu_{\odot}}\right)^{-2} \left(\frac{T_{\text{eff}}}{T_{\text{eff},\odot}}\right)^{1/2}$$

DIRECT METHOD

Inverting the scaling relations

 $\frac{M}{M_{\odot}} = \left(\frac{\nu_{\max}}{\nu_{\max,\odot}}\right)^{3} \left(\frac{\Delta\nu}{\Delta\nu_{\odot}}\right)^{-4} \left(\frac{T_{\text{eff}}}{T_{\text{eff},\odot}}\right)^{3/2}$ $\frac{R}{R_{\odot}} = \left(\frac{\nu_{\max}}{\nu_{\max,\odot}}\right) \left(\frac{\Delta\nu}{\Delta\nu_{\odot}}\right)^{-2} \left(\frac{T_{\text{eff}}}{T_{\text{eff},\odot}}\right)^{1/2}$

STATISTICAL METHOD

It takes into account stellar theory predictions

"Grid-based" or "Bayesian" Method

DIRECT METHOD

Inverting the scaling relations

 $\frac{M}{M_{\odot}} = \left(\frac{\nu_{\max}}{\nu_{\max,\odot}}\right)^{3} \left(\frac{\Delta\nu}{\Delta\nu_{\odot}}\right)^{-4} \left(\frac{T_{\text{eff}}}{T_{\text{eff},\odot}}\right)^{3/2}$ $\frac{R}{R_{\odot}} = \left(\frac{\nu_{\max}}{\nu_{\max,\odot}}\right) \left(\frac{\Delta\nu}{\Delta\nu_{\odot}}\right)^{-2} \left(\frac{T_{\text{eff}}}{T_{\text{eff},\odot}}\right)^{1/2}$

STATISTICAL METHOD

It takes into account stellar theory predictions

"Grid-based" or "Bayesian" Method

PARAM

PARAM

PARAM code is a **Bayesian** tool to **estimate stellar properties** by comparing observational data with a grid of stellar models.

INPUT = ([M/H],
$$T_{eff}$$
, $\Delta \nu$, ν_{max}) **STELLAR MODELS**
OUTPUT = (M, R , age, log $g, M_{\lambda}, ...$)

Rodrigues et al. 2014

PARAM

PARAM code is a **Bayesian** tool to **estimate stellar properties** by comparing observational data with a grid of stellar models.

OUTPUT = $(M, R, \text{age}, \log g, M_{\lambda}, ...)$

Rodrigues et al. 2014

Beyond Scaling Relations

Uncertainties at level of 10% for mass lead to uncertainties on age larger than 30%

Beyond Scaling Relations

Uncertainties at level of 10% for mass lead to uncertainties on age larger than 30%

MOREOVER

Scaling relations do not consider that:

- Stars in general are not homologous to the Sun. Hence the sound speed in their interior does not simply scale with mass and radius only.
- The oscillation modes detected in stars do **not obey to the asymptotic approximation** to the same degree as in the Sun.

Beyond Scaling Relations

Uncertainties at level of 10% for mass lead to uncertainties on age larger than 30%

MOREOVER

Scaling relations do not consider that:

- Stars in general are not homologous to the Sun. Hence the sound speed in their interior does not simply scale with mass and radius only.
- The oscillation modes detected in stars do not obey to the asymptotic approximation to the same degree as in the Sun.

deviation from the scaling relations

White et al. 2011; Miglio 2012; Miglio et al. 2013; Brogaard et al. 2016; Miglio et al. 2016; Guggenberger et al. 2016; Sharma et al. 2016; Handberg et al. 2017

Deviation of Scaling Relations

Deviation of Scaling Relations

Deviation of Scaling Relations

PARAM 1.4

Rodrigues et al. 2017

LET'S START

Fill in the parameter list with your data

☆	ST	EL	LA	R	0	В	S	E	R	V,	4	BL	E.	S
---	----	----	----	---	---	---	---	---	---	----	---	----	----	---

Enter with stellar observed parameters together with their 1 o errors (here assumed to be Gaussian): Name: 5024405 Effective temperature: T eff = 4775.0 ± 70.0 K Metallicity: [Fe/H] = 0.10 dex 0.02 ± Logarithm of surface gravity: logg = [-se.e dex -99.9 ± //stev.oapd.inaf.it/param Luminosity: L = -99.9 ± Parallax¹: ϖ = -99.9 ±