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What is this?What is this?



BiBirmingham rmingham SSolar olar OOscillation scillation NNetworketwork

A wide-world network of 6 telescopes for observe oscillation in the 
Sun.



HelioseismologyHelioseismology

Time Series

Davies et al. 2014
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Fourier
Transform

Time Series Power spectrum

Davies et al. 2014



Why Do Stars Pulsate?Why Do Stars Pulsate?

Aerts ,2021RvMP...93a5001A

• Self-exited oscillationsSelf-exited oscillations 
unstable oscillations, e.g. κ-mechanism. They are 
typical in stars like Cepheids, RR Lyrae, Mira, δ Scuti, 
β Cephei, and other classical pulsators.
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Solar-like pulsationsSolar-like pulsations



Little bit of theory…Little bit of theory…
Standing Waves in a StringStanding Waves in a String

L
Wave equation:

Solution in the form of monocromatic wave:

with boundaries:

Where:



Little bit of theory…Little bit of theory…
Acoustic Standing Waves in an Organ PipeAcoustic Standing Waves in an Organ Pipe

L
Acoustic wave equation:

Solution in the form of monocromatic wave:

with boundaries: and: 



Applying the theory…Applying the theory…
Ulrich 1986



Again a little bit of theory…Again a little bit of theory…
2D and 3D2D and 3D

  



Again a little bit of theory…Again a little bit of theory…
Spherical harmonics Spherical harmonics 

  

Solutions we search are  

Radial functions (n)

          +

Spherical harmonics



Again a little bit of theory…Again a little bit of theory…
System of Equations for Adiabatic OscillationsSystem of Equations for Adiabatic Oscillations

  

Equation of continuity

Equations of motion

Poisson’s equation

Energy equation

In most of the star, oscillations are 
adiabatic

Oscillations typically have small amplitudes compared with the characteristic
scales of the star, and so they can be treated as small perturbations around a
static equilibrium state



Again a little bit of theory…Again a little bit of theory…
A lot of maths later….A lot of maths later….

  

Solving the system of equations is the primary aim of oscillation codes (like e.g.
GYRE, Townsend & Teitler, 2013 or LOSC, Scuflaire et al., 2008). 

The solutions consist in a set of discrete eigenfunctions which describe the 
properties of oscillation modes. Each solution/mode can be identified by three 
integers numbers defining the spherical harmonics  (n,l,m) 



The radial order n. The radial order 
corresponds to the numbers of nodes of
the mode between the centre and the 
surface.

The angular order l (or degree). The 
angular order represents the total number 
of nodal lines on the stellar surface

The azimuthal order m. The azimuthal 
order indicates how many of these surface 
nodal lines cross the equator. 

In absence of rotation or other features that 
break the spherical symmetry of the star, m 
does not affect the frequencies. 

Modes PropertiesModes Properties
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Solar OscillationsSolar Oscillations
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Solar Oscillations

𝜈max
frequency of the 
maximum oscillation 
power

Davies et al. 2014



𝜈max
frequency of the 
maximum oscillation 
power

Davies et al. 2014

Solar OscillationsSolar Oscillations

Gaussian Envelope



𝜈max
frequency of the 
maximum oscillation 
power

𝜈max∝
𝑀

𝑅2√𝑇 eff

Davies et al. 2014

Solar OscillationsSolar Oscillations

Gaussian Envelope



Christensen-Dalsgaard, 2002 Rev. Mod. Phy. 74

HelioseismologyHelioseismology
Constraints on the solar structure by model – data comparison 

e.g. depth of convective envelope: 0.713 ± 0.003 R
                                                                       Christensen-Dalsgaard, et al 1991 ApJ 378



From Solar to Stellar OscillationsFrom Solar to Stellar Oscillations



𝜈max

Δ𝜈

From Solar to Stellar OscillationsFrom Solar to Stellar Oscillations

Using the light curve Fourier transformation 
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Chaplin & Miglio 2013

Asteroseismology in Asteroseismology in KeplerKepler



𝜈max=𝜈max ,⨀
𝑀

𝑅2√𝑇 eff

∆𝜈=∆𝜈⊙√𝑀𝑅3

𝑀
M⊙

=( 𝜈max
𝜈max ,⨀ )

3

( Δ𝜈Δ𝜈⨀ )
− 4( 𝑇 eff

T eff ,⨀ )
3/2

𝑅
R⊙

=( 𝜈max
𝜈max ,⨀ )( Δ𝜈Δ𝜈⨀ )

−2( 𝑇 eff

T eff ,⨀ )
1/2

DIRECT METHOD
Inverting the scaling relations

Scaling RelationsScaling Relations



Solar-like oscillations Solar-like oscillations 
Pressure Modes
- acoustic waves
- high frequencies
- Equally spaced in frequency (Dn)
- Fundamental mode with the lowest frequency
- Can be radial

Gravity modes
- restoring force: buoyancy
- low frequencies
- Equally spaced in period (DP)
- Fundamental mode with the highest 

frequency
- Cannot be radial
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Lamb Frequency Brunt-Väisäla Frequency



Solar-like oscillations in
red giants

Mixed modes:
- Acoustic waves coupled with 
gravity waves
- Cannot be radial

Solar-like oscillations in evolved stars Solar-like oscillations in evolved stars 
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Solar-like oscillations Across the HRSolar-like oscillations Across the HR



Solar-like oscillations Across the HRSolar-like oscillations Across the HR

First mixed mode appears



Solar-like oscillations Across the HRSolar-like oscillations Across the HR
Hydrogen Envelope

Hydrogen Burning Shell
degenerete Helium Core

Hydrogen Convective Envelope

Helium Burning Core
Helium Rich core

Hydrogen Burning Shell



Mosser et al. 2014

Period Spacing in KeplerPeriod Spacing in Kepler
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Period Spacing in KeplerPeriod Spacing in Kepler

Bedding et al. 2011 RGB

RC



Mosser et al. 2014

Period Spacing in KeplerPeriod Spacing in Kepler

Bedding et al. 2011 RGB

RC



Period Spacing in Red ClumpPeriod Spacing in Red Clump
Period Spacing is sensible to the inner layers of the stars. It can be 
used to test e.g. Core-convection.
To extend the fully mixed region overshoot is usually used. Let consider 
a  step function overshooting: the overall radius of the mixed core is 
given by PHrr ovheborder classicalcore mixed 



Period Spacing in Red ClumpPeriod Spacing in Red Clump
Period Spacing is sensible to the inner layers of the stars. It can be 
used to test e.g. Core-convection.
To extend the fully mixed region overshoot is usually used. Let consider 
a  step function overshooting: the overall radius of the mixed core is 
given by PHrr ovheborder classicalcore mixed 

classic OVershooting Penetrative Convection



Period Spacing in Red ClumpPeriod Spacing in Red Clump
Overshooting changes 
the maximum period spacing 

Thermal stratification changes 
the minimum period spacing 



ZAHB

Field red giant stars Vrard et al. 2016 catalogue + 
APOGEE metallicity

Period Spacing in Secondary ClumpPeriod Spacing in Secondary Clump

Transition mass



Transition mass

Period Spacing in Secondary ClumpPeriod Spacing in Secondary Clump



Field red giant stars Vrard et al. 2016 catalogue + 
APOGEE metallicity

Period Spacing in Secondary ClumpPeriod Spacing in Secondary Clump

RGB-tip core-Helium mass vs. mass



Period Spacing in Secondary ClumpPeriod Spacing in Secondary Clump

Montalbán et al. (2013) used the 
observed ∆Πg provided by Mosser 
et al. (2012) as diagnostic for 
studying the central properties of 
secondary clump stars. 
They showed that at the same mass 
Mtr , the predicted average RC 
period spacing presents a minimum 
as well.
They pointing out that in stellar 
models increasing MS-overshooting 
modifies Mtr , shifting the expected 
minimum to lower mass values.
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