Participant & project presentations

Frontiers of stellar evolution MWGaiaDN School

Antonella Vallenari

antonella.vallenari@inaf.it INAF, Padova Observatory

What I do

- Open clusters in the Milky Way
- PI of WEAVE/4MOST cluster survey
- Gaia astrophysical parameters & Validation
- Interested in applications of Gaia data

Main goals for this week

- Get to know you
- Learn about your research projects
- Contribute to team building

I can help with

- Gaia stellar parameters
- Stellar populations in the Galaxy

Angela Bragaglia angela.bragaglia@inaf.it INAF-OAS Bologna

What I do

- Open clusters in the Milky Way
- Globular clusters in the Milky Way
- co-PI of 4MOST Stellar Cluster survey (S13)
- SWG and co-lead of Galactic Archaeology-Open Clusters survey in WEAVE
- High resolution spectroscopy of stellar clusters (not only surveys)

Main goals for this week

- Try to present (part of) the huge spectroscopic data set existing and planned
- Learn about your research projects

I can help with

- Stellar spectroscopy
- Stellar populations in the Galaxy

[Sorry, I will be in Padua only on the 15 and 16. I will try to follow on-line the 17]

Università degli Studi di Padova

Dipartimento di Fisica e Astronomia Galileo Galilei

Michele Trabucchi

michele.trabucchi@unipd.it University of Padova Department of Physics & Astronomy

What I do

- Late evolution of low-/intermediate-mass stars
- Variability, mass-loss, stellar winds
- Hydrodynamic simulations of pulsating stars
- Variable stars in stellar populations
- Variable stars as distance and age indicators
- Member of *Gaia* & LSST

ASTRONOMICO DI PADOVA

• Teaching: stellar structure and evolution

Università degli Studi di Padova

Dipartimento di Fisica e Astronomia Galileo Galilei

Giada Pastorelli

giada.pastorelli@unipd.it gpastorelli.astro@gmail.com

University of Padova Department of Physics & Astronomy

What I do

- Evolution of low- and intermediate-mass stars
- Simulated photometry and physical parameters of resolved stellar populations
- Star formation history of resolved systems
- Rubin-LSST Stars, Milky Way & Local Volume Science collaboration

Main goals for this week

- Get to know you and your research projects
- Sharing my fascination (and occasional frustration) for AGB stars with you

I can help with

- Stellar populations in nearby galaxies
- Web interfaces & tools from the Padova stellar astrophysics group

Salvatore Ferrone

What I do

• Simulate mass loss of Galactic globular clusters

Goals for this week

- Learn how to query Gaia data
- Make plots with Gaia data
- Learn how to use stellar isochrones

Project ideas

 Make mock observations of my clusters' tidal tails

Georges Meynet Georges.meynet@unige.ch

FACULTÉ DES SCIENCES Département d'astronomie

Stars at the Extreme

<u>What I do</u>

- Stellar physics
- Computation of evolutionary tracks
- Nucleosynthesis
- PI of STAREX advanced ERC project (2020- 2024)

Main goal for this week

- Transfer of some knowledge
- Learn new topics
- Meet new colleagues
- Hopefully stimulate new ideas

I can help with

- Stellar physics
- Stellar evolution computations
- Isochrones
- Transport processes in stars

Anita Zanella

anita.zanella@inaf.it INAF, Padova Observatory

What I do

- Galaxy formation and evolution
- Star-clusters at cosmological distances (in high-redshift lensed galaxies)
- Sonification as a means for astronomical data representation
- Multi-sensory, hands-on public engagement activities

Main goals for this week (only Wednesday)

- Have fun with you discussing about multi-sensory astronomy
- Learn (at least a bit!) about stellar evolution and Gaia

I can help with

- High-redshift observations
- How to disseminate your results to the general public
- How to use sound to explore your datasets

What I do

- Open clusters in the Milky Way
- Asteroseismology of evolved stars with Kepler and TESS
- member of Gaia: astrophysical parameters & Validation
- member of *Ariel* Stellar Characterization working group : ages and masses of the input catalogue
- member of *Plato*: Red giant catalogue for stellar calibration

I can help with

• Stellar Evolution

INAF

DI ASTROEISICA

- Asteroseismology
- Characterising stars

Guglielmo Costa

guglielmo.costa.astro@gmail.com

University of Lyon 1,

soon at

University of Padova Department of Physics & Astronomy

Università degli Studi di Padova

Dipartimento di Fisica e Astronomia Galileo Galilei

What I do

- Stellar structure and evolution
- Physical processes in stars
- Final fate of massive stars
- Black holes mass spectrum
- Binary evolution
- Outreach events (e.g. <u>Astronomy on Tap</u>!)

[Sorry, I won't be in Padova because I'm going to be a dad soon! Enjoy the school!]

Marc del Alcázar i Julià

IEEC-ICCUB, mdelalju@fqa.ub.edu

What I do

- Derivation of Galactic parameters with BGM FASt
- Member of the WEAVE consortium:
 - In charge of GA LR disc OBs preparation
 - Responsible for SCIP HR AC at UB
- Studentship Programme at the ING

Main goals for this week

- Get both detailed and holistic views on stellar evolutionary models
- Learn on the complexity of age determination
- Understand how asteroseismology works

My project ideas

 Present the results of my PhD: derivation of the Galactic SFH and IMF using different stellar evolutionary models

Alessio Liberatori

University of Athens, aliberatori@phys.uoa.gr

What I do

- Explore AGB Carbon stars properties
- Stellar evolution of AGB stars
- Searching new carbon stars proxies

Main goals for this week

- Deepen knowledge in stellar evolution models and AGB stars stellar populations
- Learn Trilegal
- Learn principles of Asteroseismology
- Learn M-L tools and apply them
- Collaborate and connect

My project ideas

Derive stellar ages for a population of AGB carbon-rich stars

National and Kapodistrian University of Athens

Ioannis N. Kallimanis

INAF-OAPd, University of Padova *ioannis.kallimanis@inaf.it*

What I do

- Open clusters
- Precise age determination
- Membership analysis

Main goals for this week

 Understand how stellar evolution models work

MWGaiaDN

Doctoral Network

• Understand the systematics introduced by stellar models to the stellar parameter inference

I can help with

- Bayesian fitting tools
- Coding

My project ideas

• Comparing parameters estimated by fitting different stellar models

Pietro Facchini

ZENTRUM FÜR ASTRONO

What I do:

- OB associations and young star clusters in nearby star forming galaxies
- Runaway stars
- Massive stars in the field of nearby galaxies

My goals for the week:

- Learn about the age determination
- To increase my knowledge of models of stellar evolution

Project idea:

Comparison of the CMD of the tails of open clusters and that of the core

Natsuki Funakoshi

University College London, UK <u>n.funakoshi@ucl.ac.uk</u>

What I do

- kinematical diversity of spiral arms in the Milky Way using Cepheids (published in <u>MNRAS(link)</u> !)
- Current project: trace the Galactic disk figure depending on stellar age using APOGEE Red Giant stars by MCMC fitting

Main goals for this week

- learn on stellar age determination, especially how asteroseismology works on it
- understand the stellar evolution model and stellar parameters

Kinematical diversity of spiral arms Rotation Cepheids around Perseus arm: Diverging from the arm

outer

Cepheids around Outer arm:

Converging into the arm

Thomas Hajnik

University of Cambridge, th721@ast.cam.ac.uk

What I do

- Developing of a low-density (bright star) observing mode for WEAVE
- Designing a survey on exoplanet host stars
- Host-star / planet relations

Main goals for this week

Deepen understanding of Stellar Evolution

40000

30000

20000

10000

6000

- Learn how to derive stellar ages
- Collaborate and connect

My project ideas

Explore supervised MI methods for stellar age determination

Natalia Alvarez Baena

Erasmus Mundus Joint Master program in Astrophysics and Space Science (MASS)

Universitá degli Studi di Roma "Tor Vergata" natalia.alvarezbaena@students.uniroma2.eu

What I do

- Dynamical evolution of Open Clusters.
- In progress: Chemical abundances of OCs.
- Future interest: using the above to study the dynamical and chemical evolution of the galactic disc.

Main goals for this week

- Further understanding in stellar evolution and asteroseismology.
- Get familiar with the different ongoing spectroscopic ground-based surveys.
- Improve abilities with machine-learning, especially regarding its astrophysical applications.
- Meeting new people and establishing collaborative connections for my next academic steps (PhD).

My project ideas

• 3D reconstruction of Open Clusters' structure.

Mahdieh Navabi

Phd Candidate at University of Surrey (UK)

What I do:

- Working on the metallicity of Small Magellanic Cloud (SMC) with the largest sample of RGB field stars
- Obtaining the radial and azimuthal metallicity gradient of SMC
- Obtaining the chemical enrichment of the SMC using alpha element abundances

Main goals for this week:

- Learning how to derive stellar parameters using stellar models
- Utilising Gaia data to enhance our photometric and spectroscopic analysis.

My Project idea:

• How to derive ages of RGB stars on the SMC

m.navabi@surrey.ac.uk

Chloé Padois

PhD student at ICCUB, Universitat de Barcelona chloe.padois@fqa.ub.edu

What I do

- Simulation of exoplanet population in a MW simulation
- Compare synthetic exoplanet populations to observations

Main goals for this week

- Learn more about stellar evolution models
- How are made isochrones/stellar tracks libraries
- Learn about age determination
- Learn about TRILEGAL
- Understand better asteroseismology

My project ideas

- Explore supervised ML methods for stellar age determination (ft. Thomas)
- OR compare different stellar evolution models results for our synthetic stellar population in a simulated Galaxy.

 $\log(T_{eff})$

Mauritz Wicker

mwicker@astrouw.edu.pl *** Warsaw University Astronomical Observatory

What I do

- Time domain astronomy with Gaia Science Alerts
- Gravitational microlensing (photometric + astrometric)
- Black hole detection through quasar lensing in the Milky Way Halo

Main goals for this week

- Learn about stellar evolution and isochrones
- Learn about spectroscopic surveys
- Learn about stellar population studies (specifically in the MW halo)
- Collaborate and connect

My project ideas

- Study stellar Isochrones for Gaia ≤ sources using PARSEC (Bressan et al. 2012)
- Use of spectroscopic surveys

* UNIVERSITY OF WARSAW

BHTOM

Manuela Leguizamón Pineda

Master in Astrophysics and Cosmology, University of Padova paulamanuela.leguizamonpineda@studenti.unipd.it

What I do

- Open clusters
- Multiple Stellar Populations
- Interacting binaries and stellar rotation

Main goals for this week

- Understand how machine learning could be implemented in MSPs
- Get familiar with the different stellar surveys and how to make the best out of them
- Better understanding in stellar evolution

My project ideas

- Comparing parameters estimated by fitting different stellar models (collaboration with Ioannis)
- Retrieve data related to binaries and stellar rotation to compare them with MSPs scenarios

Laura Ramírez-Galeano

PhD student at Observatory of Geneva laura.ramirezgaleano@unige.ch

What I do

- Supermassive star (<10^3 10^4 Msun) models with MESA, to explain multiple stellar populations (MSP) and abundance anomalies in GCs.
- Studying runaway collisions and their impact on SMS.

Main goals for this week

- Investigate Gaia DR3
- Better understanding of asteroseismology
- Collaborate and connect

My project ideas

- Study the membership of stars in GCs using Gaia astrometric data and photometric data.
- If it is possible, compare the observed composition with predictions from SMS models.

Erika Korb

erika.korb@studenti.unipd.it

What I do

- Stellar and binary evolution with MESA (massive stars)
- Mass transfer physics modeling
- Population synthesis studies (e.g. SEVN code with PARSEC tracks)
- Progenitors of gravitational wave merger binaries

Main goals for this week

- Learn current and expected discoveries from Gaia
- Understand where (and where not, yet) we can use asteroseismology to constrain stellar interiors
- Learn from tutorials on ML and asteroseismology how to derive stellar parameters from observations

My project ideas

- Study the impact of different stellar models (also with different codes e.g. MESA, PARSEC) on the mass transfer physics
- Observational constraints for stellar and binary evolution from the observation of Gaia BHs and Gaia NSs

lorio et al. 2024

Andrew Garner

PhD student University of Surrey Andrew.Garner@surrey.ac.uk

Σ

What I do:

- Combine binary population synthesis code with a distribution based Milky Way model to infer stellar population properties
- Use these models to also study sub-populations related to binary physics

Goals:

- Better understand about stellar evolution models
- Understand asteroseismology for stellar age determination

Project:

• Searching for possible binary products locally (chemically peculiar, RUWE)

