

Harnessing the Power of Artificial Intelligence for Predictive Maintenance of Industrial Plants

• Goals:

- Demonstrate the usability of AI-based techniques for predictive maintenance.
- Model interdependencies in complex industrial apparatus.
- Partners:
 - Eni, UniBO, INAF, INFN
 - Eni production sites, including sensor readings and apparatus data.

Finanziato dall'Unione europea

Work Packages (WP)

WP1 – Eni

Objective: Identify and prioritize equipment with complex behaviors. Tasks: Data selection, delivery, and interpretation with benchmarking.

WP2 – UniBO

Objective: Compare performance of autoencoders (AE) and graph neural networks (GNN).

Tasks: Data exploration, prototype development, validation, and performance tuning.

WP3 – INAF

Objective: Identify best unsupervised learning approaches for anomaly detection.

Tasks: Data acquisition, anomaly detection demonstrator, model validation.

WP4 – INFN

Objective: Manage data streaming and analysis using various techniques. Tasks: Data ingestion platform POC (Proof Of Concept), comparison of approaches.

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Ministero dell'Università e della Ricerca Italiadomani

Research Plan and Reporting

Reporting Period: M8 – March 2024 – June 2024

WP1 – Eni

Target: Interpretation and benchmarking of results.

KPI: Benchmarking report.

WP2 – UniBO

Target: Prototype of AE-based approach.

KPI: Prototype description report.

WP3 – INAF

Target: Data acquisition campaign & Prototype of AE-based approach. KPI: Report with main results.

WP4 – INFN

INAF

Target: Selection of analysis approaches and data ingestion platform POC. KPI: Report on selected approaches and POC description.

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Finanziato dall'Unione europea

Agonda	
Agenua	

- The object of our study
- Goal and main questions
- The adopted pipeline
- Main results
- Next preliminary steps

The object of our study: high-pressure compressor

Attribute	Description
Туре	High-pressure compressor
Sensors	Equipped with 75 sensors
Current Status	Currently in production
Primary Use	Increases the pressure of gas before introduction into the SNAM methane pipeline
Design	Made up of a piston that slides inside a cylinder and two suction/delivery valves
Application	Designed for high-pressure air compression applications typical of petrochemical and refining plants
Stages	2-stage design
Delivery Pressure	Can reach up to 40 bar
Critical Asset Reliability	Extensive set of integrated sensors
Vibration Sensors	Monitors the condition of bearings and shafts
Temperature Sensors	Monitors engine, cylinders, and lubricating oil
Pressure Sensors	Monitors suction, delivery, and oil
Flow Sensors	Monitors compressor output

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

If it breaks, what's the consequence?

Consequence	Description
Disruption of Gas Supply	Interrupts the continuous supply of gas, leading to reduced flow or complete halt in gas delivery.
Pressure Imbalance	Causes pressure imbalance in the pipeline system, creating safety concerns.
Equipment Damage	Leads to further mechanical damage, necessitating expensive repairs or replacement.
Safety Hazards	Poses risks of leaks, explosions, or other dangerous scenarios endangering personnel and infrastructure.
Operational Downtime	Results in halted operations, affecting productivity and potentially leading to financial losses.
Environmental Impact	Potential gas leaks could release methane into the atmosphere, contributing to greenhouse gas emissions.
Financial Losses	Includes direct costs (repair, replacement) and indirect costs (lost production, fines, reputational damage).

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Goal and questions

The Goal: Create a model to accurately classify events that indicate potential compressor failure

The questions: Using unsupervised clustering algorithms as additional features for clustering models:

Does it improve predictions?

If yes, how much and when? Do training times change using clustering features?

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Clustering and Metrics

Clustering models

Validation

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Pre-processing

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Pre-clustering (1)

Ministero dell'Università e della Ricerca

Pre-clustering (2)

...Metrics

Clustering Algorithm	ARI	NMI
KMEANS HDBSCAN	0.30 0.55*	0.42* 0.64*
OPTIC	-0.02	0.16
GMM	0.03 0.45*	0.25 0.56*
MS-AMS	0.35*	0.36

Clustering models

data imbalance: SMOTE (Synthetic Minority Over-sampling Technique)

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Cross-validation and results

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Utilizing the best features identified through unsupervised pre-clustering enhances the accuracy of the test set in identifying potential faults by an average of 4.87%.

Italia**domani**

ANO NAZIONALE

Additionally, the training time for clustering models is reduced by an average of 22.96%.

Results suggest that including pre-clustering features can be advantageous, especially in contexts where accuracy is critical and training times are relevant.

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Ministero dell'Università e della Ricerca

Preliminaries on Anomaly Detection (1)

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Preliminaries on Anomaly Detection (2)

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Preliminary Questions on Anomaly Detection and next steps

Why do all the methods identify the 'fault period' in June (not present in the NoC) ?

Why do the added features not seem to improve the accuracy in this case?

To provide the metrics of accuracy, such as F1-score, Recall, ROC, and PR

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Preliminaries on Precursor Anomaly Detection

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Precursor Anomaly Detection, next steps

Check for the most relevant methods from different strategies Obtain the metrics for all the methods to be used

Identify iper-parameters that could improve the quality of the prediction

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Finanziato dall'Unione europea NextGenerationEU

Thank You

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing