Synthetic models of the lunar seismic field

Emanuele Casarotti (INGV), Angela Stallone (INGV), Federica Magnoni (INGV), Daniel Peter

Centro Internazionale Mariapoli - Castel Gandolfo

Outline

- SPECFEM3D suite: history, features, plans
- Simulating the moon: asteroid impact preliminary result
- Data
- Works in progress

SPECFEM3D suite https://specfem.org

The SPECFEM codes use the spectral-element method to simulate seismic wave propagation on different scales. They are open-source freely available on https://github.com/SPECFEM

LGWA 07–11 ott 2024 Centro Internazionale Mariapoli - Castel Gandolfo

SPECFEM3D suite

- C-PML
- Anisotropy
- Attenuation
- Adjoint kernels

LGWA 07–11 ott 2024 Centro Internazionale Mariapoli - Castel Gandolfo

• 3D acoustic, elastic, poroelastic waves Unstructured meshes (CUBIT/Trelis, Gmsh) Load-balanced mesh partitioning Acoustic/elastic, Elastic/poroelastic,... coupling

fault rupture (dynamic/kinematic) simulations

CUDA / HIP support for GPUs

• 3D crust and mantle models Topography & Bathymetry

- Rotation
- Ellipticity
- Gravitation
- Anisotropy
- Attenuation
- Adjoint kernels

CUDA / HIP / OpenCL support for GPUs

SPECFEM3D applications

COMPUTATIONAL INFRASTRUCTURE FOR GEODYNAMICS (CIG PRINCETON UNIVERSITY (USA) CNRS and UNIVERSITY OF MARSEILLE (FRANCE) ETH ZÜRICH (SWITZERLAND)

SPECFEM 3D Cartesian

Unstructured Meshes - Asteroid Eros

LGWA 07–11 ott 2024 Centro Internazionale Mariapoli - Castel Gandolfo

High resolution seismic wave propagation - 2009 Mw 6.3 L'Aquila

Adjoint Full Waveform Tomography - IMAGINE_IT, Italy

SPECFEM3D globe applications

SHAKEmovie - 2023 Mw 7.9 Turkey

Adjoint Full Waveform Tomography - Earth - Bozdag et al.

LGWA 07–11 ott 2024 Centro Internazionale Mariapoli - Castel Gandolfo

Globe

Spectral Element Method

Neglect mass redistribution - Cowling approximation

Wave equation solved by SPECFEM3D_GLOBE in crust, mantle and inner core:

$$\rho \big(\partial_t^2 \mathbf{s} + 2\mathbf{\Omega} \times \partial_t \mathbf{s} \big) = \nabla \cdot \mathbf{T} + \nabla (\rho \mathbf{s} \cdot \mathbf{g})$$

Wave equation solved by SPECFEM3D GLOBE in fluid outer core:

$$\partial_t^2 \mathbf{s} + 2\mathbf{\Omega} \times \partial_t \mathbf{s} = \nabla(\rho^{-1}\kappa\nabla\cdot\mathbf{s} + \mathbf{s}\cdot\mathbf{g})$$

SPECFEM3D GLOBE uses domain decomposition between the fluid outer core and the solid inner core and mantle matching exactly:

continuity of traction

continuity of the normal component of displacement

- WEAK FORM
- HEX elements
- GAUSS-LOBATTO-LEGENDRE quadrature, GLL points ightarrow
- Diagonal Mass Matrix (no inversion of a linear system)
- Explicit time-marching scheme

LGWA 07–11 ott 2024 Centro Internazionale Mariapoli - Castel Gandolfo

Developed in Computational Fluid Dynamics (Patera 1984)

Accuracy of a pseudospectral method, flexibility of a finite-element method

Extended by Komatitsch and Tromp, Chaljub et al., Capdeville et al.

Large curved "spectral" finite-elements with high-degree polynomial interpolation

Mesh honors the main discontinuities (velocity, density) and topography

Very efficient on parallel computers, no linear system to invert (diagonal mass matrix)

SPECFEM3D globe - planetary applications

Courtesy of D. Peter

LGWA 07–11 ott 2024 Centro Internazionale Mariapoli - Castel Gandolfo

Synthetic wavefield: meteoroid impact SPECFEM3D_globe

Topography: Lunar Orbiter Laser Altimeter (LOLA) 0.9 arc-minuté

Moon radius 1737.1 km

Elements size = 21 km (128 NEX)

Moon model **VPREMOON** from reference:

Very preliminary reference Moon model, PEPI, 188, 96 - 113.

combined with core values from:

Seismic Detection of the Lunar Core,

Assuming a solid inner core

Synthetic wavefield: meteoroid impact SPECFEM3D_globe

Topography: Lunar Orbiter Laser Altimeter (LOLA) 0.9 arc-minute

Moon radius 1737.1 km

Elements size = 21 km (128 NEX)

The minimum period resolved is around 12 s

Moon model **VPREMOON** from reference:

Very preliminary reference Moon model, PEPI, 188, 96 - 113.

combined with core values from:

Seismic Detection of the Lunar Core,

Assuming a solid inner core

Synthetic wavefield: meteoroid impact SPECFEM3D_globe

Source: perpendicular force

meteoroid impact on May 13, 1972 1.1 N, 16.9 W (+/- 0.2 degree) factor force source: 5.e+9 N

Receivers:

Apollo Passive Seismic Experiments

S12	-3.01084	-23.42
S14	-3.6445	-17.47
S15	26.13407	3.6298
S16	-8.97577	15.496

Simulations:

Seismograms 60 minutes 96 CPU processor DT=0.95 s 1 h 41m CPU time

Synthetic wavefield: **Meteoroid impact**

Body wave transmission in relatively homogeneous zone

[Apollo 14 preliminary science report, 1971]

SPECFEM3D_globe

Comparison DATA and SYNTHETIC for meteoric and lander impact -> scattering

Multiple simulations for noise

SPECFEM3D

Reproducing the data from the Apollo 16 active seismic experiment

Unstructured Mesh and higher frequency

(Ondera, 2024)

Synthetic wavefield: Work in progress

