SST Camera Software

Overview of the design

Jason J. Watson

SST Software Meeting
February 19, 2024

Motivation of the SST Camera Control Software

Lessons learned from the CHEC prototype were gathered

A fresh revamp of the software was logical for the SST camera:
Account for the changes in hardware
Address the shortcomings identified during internal code reviews and usage in the field
Meet the requirements in quality and functionality required for CTA
Retain knowledge and positives from the previous software

Architecture Components Overview

CAMERA SOFTWARE ARCHITECTURE
COMPONENTS VIEW

Operations modularised into discrete processes, each with SUILD TEST AND CI SYSTEMS
a SIngIe responSIblllty COMMON PROCESS ORCHESTRATOR |
. . . LIBRARIES _
Each hardware item of the camera is controlled by its own e A - 4
prOCeSS L':II]BIG%/':AF;I;(CAMERA COLLECTOR : ‘ GUARDIAN /}
, , , /Cloany N
Collectors gather monitor and log information from other . S— -
processes wowr- ng'g‘l:? MONTOR
Manager implements the camera state machine, interfacing with 4™ (U geqon ~ ©
the individual hardware control processes, and makes decisions && ..
based on the monitor information collected raits | :
i | /
The event builder process handles the bulk waveform data at B SN
high performance | RPN
Orchestrator oversees the initialisation and health of all SIS Sc s sc sc Se sk
pI‘OCeSSGS REPOSITORY W € 4 < U
. . . (COMMON FPGA
Common libraries used as dependencies across the system to | rwus \
avoid duplication of shared features 8 l Bp ™ A
FW

FW FW
| @)

messages (monitoring, logging, IPC, etc.),
geometry/mapping, configuration, file IO

™ TB
x32 (?)

Packages

Processes are 1-to-1 with a package

Library (Scripts

> Application 3 Dependency

a ST)
_ ~ | Commissioning

Th ree laye rS Of paCkageS: ngh_level sstcam-manager sstcam-monitor sstcam-pointing ‘\
Shared Descriptions: Libraries Software | | il s (1—
containing the descriptions of v | \ J
messages, serialised camera data - Y v
and Camera geometries Y : \ sstcam-slowboard sstcam-chiller sstcam-flasher sstcam-slowsignal sstcam-eventbuilder
Controllers: Hardware drivers and “ontrollers S a2)] | | ES:
control servers (per device) Fe
High-level Software: Pilot multiple v v
controllers and expose the Shared ,——| secammepeng
interface to CTA (ACS) Descriptions '

Dependencies between layers v ¥ Y p—

(bottom to top), not across layers L Legend

External @:;Q ‘gRPC (\

Each controller can be installed
individually

o

General Design of the Controllers

Hardware abstraction layer scheme:

= Via the gRPC interface, expose all
functionalities of the hardware device

= Users are not required to have the low-level
knowledge of how those operations are
achieved with the device

Same layout is adopted for all camera hardware,
minimising learning effort for each controller

Each controller is accompanied with a “mock” of
the hardware, implemented in software

The mock facilitates development and testing of
the higher level software in the absence of the
hardware

J. J. Watson

MODULE

Command-line tool

gRPC Server (& Client)

Hardware Abstraction Layer

Hardware Communication
(e.g. FPGA register RW requests)

Inter-Process Communication

IPC within the SST camera software can be separated into three categories:
Internal Remote Procedure Calls (RPC) - request a process operation from another process
Internal telemetry gathering, to monitor the status of software and hardware in the system
Receiving of CTA control requests and sending of camera data to CTA (ACS)

The technology we chose for RPC is - language agnostic, using protobuf as a common IDL
Each package is responsible for implementing the server described in the protobuf files
Any process with knowledge from the protobufs can then make requests to the other servers

pl’OtObUf service WidgetService {
A // Ping the hardware.

rpc PingHardware(PingHardwareRequest) returns (PingHardwareResponse);

protoc
(generation)

client [Request pp—— \ Hardware
(e.g. script or (hardware process) Protocol
manager) <
Response |

class WidgetControlServer:
async def PingHardware(self, request, context):

return await self._driver.ping()

https://grpc.io/

Language & Frameworks

Python is chosen for its short development cycle time and rich ecosystem

Asyncio (Python standard library) is used for concurrency within a process

Asyncio is designed for I0O-dominated operations (e.g. hardware or remote communication)
Single threaded event loop, allowing CPU to switch to another task when waiting on 10
Switch points are defined explicitly (async/await)

Where high performance is needed (i.e. only the event builder), then C++ wrapped with pybind11
Trivial pip installation with scikit-build (glue between setuptools and Cmake)
Language versions are Python 3.9, and C++ 11.

DIna11
P @ye

Real Bython
https://realpython.com/async-io-python/

https://github.com/scikit-build/scikit-build
https://realpython.com/async-io-python/

sstcam-server O

° S
V C t l Project ID: 647 (3
e rs I o n o n ro 391 Commits 3 Branches 0 Tags 42.9 MB Project Storage

Core software packages for the operation of the SST Camera and related hardware

Mono-repo on CTA Gitlab oy Dy
Si m p le (ty p i Ca l) WO r kflOW develop sstcam-server / | - Findfile ~~ Web IDE E

[¥] README i[> BSD 3-Clause "New" or "Revised" License [CI/CD configuration Add CHANGELOG Add CONTRIBUTING

Singular clone command for entire codebase oc

Singular installation command (Makefile)
Merge requests can be performed on multiple packages

at once

Continuous Integration (Cl) pipeline tests for entire-

system compatibility, in addition to individual package
unit tests

Minimal version tracking needed between the packages

Is used for the releases

Name

Edenv

B3 sstcam-backplane

E3 sstcam-chiller

E sstcam-eventbuilder

B2 sstcam-flasher

E3 sstcam-manager

E3 sstcam-pointing

B3 sstcam-slowboard

B3 sstcam-slowsignal

3 sstcam-target

E3 sstcam-telecom

E3 sstcam-waveform

E3 sstcam-widget
.gitattributes
.gitignore

& .gitlab-ci.yml

& CMakeLists.txt
LICENSE

5 Makefile
~+ README.md

& requirements.txt

Last commit

Make protobuf stub dependencies optional

Merge sstcam-telemtry and sstcam-prot...

Merge sstcam-telemtry and sstcam-prot...

Comments and rename of log to logger

Merge sstcam-telemtry and sstcam-prot...

Merge sstcam-telemtry and sstcam-prot...

Merge sstcam-telemtry and sstcam-prot...

Merge sstcam-telemtry and sstcam-prot...

Merge sstcam-telemtry and sstcam-prot...

Fix paths

Set logging level to INFO in test_already....

Refactor sstcam-protobuf client and server

Create configuration container baseclass

Top level .gitattributes and .gitignore

Start snapshotting task

Fix CI

Create top-level CMakeLists.txt for IDEs

Create top-level LICENSE

Merge sstcam-telemtry and sstcam-prot...

Fix import and update README

Merge branch 'develop' into target_driver

Last update

4 months ago

3 months ago

3 months ago

1 month ago

3 months ago

3 months ago

3 months ago

3 months ago

3 months ago

1week ago

1week ago

3 months ago

1month ago

7 months ago

3 months ago

3 months ago

7 months ago

7 months ago

3 months ago

3 months ago

1week ago

https://gitlab.cta-observatory.org/cta-array-elements/sst/camera/server/sstcam-server
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
https://semver.org/

Testing

Unit tests for each component in a package
Including tests on supportive non-code items (e.g. configuration, TM .def files...)

Integration tests between driver and hardware
Define tests which can be identically run against the mock, and the hardware (when available)
Tests against the mock are ran in the Cl to ensure against breaking functionality
Tests against hardware are ran before every release to confirm interface has not changed

Integration tests between high-level software and controllers
Using the mocks, exercising the system, state machine, and event/alert handling

Pipeline #22270 triggered 2 weeks ago by %% Jason J Watson

Merge branch 'target_driver' into 'develop'

lint test benchmark

conda-centos7-install-test & conda-centos7-install-benchmark

python3.9-bullseye-develop-test

python3.9-bullseye-install-test

Summary

Lessons learnt from CHEC prototypes are incorporated into the new software design
Software is designed with careful consideration of modularity and inter-dependencies
Hardware-specific details are abstracted from the user for ease of use
Coherent design across the software packages
Frameworks used are Python asyncio and pybind11/C++
Build system is kept simple
Serious consideration given to the different end-users of the software
Strong emphasis placed on testing

Backup: IPCs

Event Data =) Slow Signal

Hardware-specific
i protocols

4"EEEERER

sstcam-backplane

Telescope Control System
Telescope Manager EEE écoatroz EmEm ‘
(ACS Component) C a
\ [| [| \ Camera Manager (monitT;r/Iog data)
(Sﬁt‘r(ggtlgsnr:;nn?ﬁ)r :'(. 1 4 v .’ "Bridge" O .)
‘ / (ACS Component)
- !‘ b

mera Local Control Softwar m L)
u 2
v ' "’
m 5

w *

i - 3 m| =2y ACS
H I g h - Ieve I sstcam-manager sstcam-monitor sstcam-pointing u 85
o .
\ :g : Trigger &

SOftwa re telemetry sink / S 8

[| é’ g
o

YA Y A Y A =\
"ammmmmp] . : .£
] = .
: “EEEEEEEEN N 3

&

EEEERED

A

Controllers

sst@m-target

s

sstcam-flasher sstcam-slowsignal

sstcam-eventbuilder
sst

camera

h-4
) 2

<-4

A

Hardware

