
Jason J. Watson
SST Software Meeting
February 19, 2024

SST Camera Software
Overview of the design



J. J. Watson

Motivation of the SST Camera Control Software

§ Lessons learned from the CHEC prototype were gathered
§ A fresh revamp of the software was logical for the SST camera:

§ Account for the changes in hardware
§ Address the shortcomings identified during internal code reviews and usage in the field
§ Meet the requirements in quality and functionality required for CTA
§ Retain knowledge and positives from the previous software

1



J. J. Watson

Architecture Components Overview

§ Operations modularised into discrete processes, each with 
a single responsibility

§ Each hardware item of the camera is controlled by its own 
process

§ Collectors gather monitor and log information from other 
processes

§ Manager implements the camera state machine, interfacing with 
the individual hardware control processes, and makes decisions 
based on the monitor information collected

§ The event builder process handles the bulk waveform data at 
high performance

§ Orchestrator oversees the initialisation and health of all 
processes

§ Common libraries used as dependencies across the system to 
avoid duplication of shared features
§ messages (monitoring, logging, IPC, etc.), 

geometry/mapping, configuration, file IO

2



J. J. Watson

Packages

§ Processes are 1-to-1 with a package

§ Three layers of packages:
§ Shared Descriptions: Libraries 

containing the descriptions of 
messages, serialised camera data 
and camera geometries

§ Controllers: Hardware drivers and 
control servers (per device) 

§ High-level Software: Pilot multiple 
controllers and expose the 
interface to CTA (ACS)

§ Dependencies between layers 
(bottom to top), not across layers

§ Each controller can be installed 
individually

3



J. J. Watson

General Design of the Controllers

§ Hardware abstraction layer scheme:
§ Via the gRPC interface, expose all 

functionalities of the hardware device
§ Users are not required to have the low-level 

knowledge of how those operations are 
achieved with the device

§ Same layout is adopted for all camera hardware, 
minimising learning effort for each controller

§ Each controller is accompanied with a “mock” of 
the hardware, implemented in software

§ The mock facilitates development and testing of 
the higher level software in the absence of the 
hardware

4



J. J. Watson

Inter-Process Communication
§ IPC within the SST camera software can be separated into three categories:

§ Internal Remote Procedure Calls (RPC) - request a process operation from another process
§ Internal telemetry gathering, to monitor the status of software and hardware in the system
§ Receiving of CTA control requests and sending of camera data to CTA (ACS)

§ The technology we chose for RPC is gRPC - language agnostic, using protobuf as a common IDL
§ Each package is responsible for implementing the server described in the protobuf files
§ Any process with knowledge from the protobufs can then make requests to the other servers

5

https://grpc.io/


J. J. Watson

Language & Frameworks 

§ Python is chosen for its short development cycle time and rich ecosystem
§ Asyncio (Python standard library) is used for concurrency within a process

§ Asyncio is designed for IO-dominated operations (e.g. hardware or remote communication)
§ Single threaded event loop, allowing CPU to switch to another task when waiting on IO
§ Switch points are defined explicitly (async/await)

§ Where high performance is needed (i.e. only the event builder), then C++ wrapped with pybind11
§ Trivial pip installation with scikit-build (glue between setuptools and Cmake)
§ Language versions are Python ≥3.9, and C++ 11.

6
https://realpython.com/async-io-python/

https://github.com/scikit-build/scikit-build
https://realpython.com/async-io-python/


J. J. Watson

Version Control
https://gitlab.cta-observatory.org/cta-array-elements/sst/camera/server/sstcam-server

§ Mono-repo on CTA Gitlab
§ Simple (typical) Gitflow workflow
§ Singular clone command for entire codebase
§ Singular installation command (Makefile)
§ Merge requests can be performed on multiple packages 

at once
§ Continuous Integration (CI) pipeline tests for entire-

system compatibility, in addition to individual package 
unit tests

§ Minimal version tracking needed between the packages
§ Semantic Versioning is used for the releases

7

https://gitlab.cta-observatory.org/cta-array-elements/sst/camera/server/sstcam-server
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
https://semver.org/


J. J. Watson

Testing

§ Unit tests for each component in a package
§ Including tests on supportive non-code items (e.g. configuration, TM .def files…)

§ Integration tests between driver and hardware
§ Define tests which can be identically run against the mock, and the hardware (when available)
§ Tests against the mock are ran in the CI to ensure against breaking functionality
§ Tests against hardware are ran before every release to confirm interface has not changed

§ Integration tests between high-level software and controllers
§ Using the mocks, exercising the system, state machine, and event/alert handling

8



J. J. Watson

Summary

§ Lessons learnt from CHEC prototypes are incorporated into the new software design
§ Software is designed with careful consideration of modularity and inter-dependencies
§ Hardware-specific details are abstracted from the user for ease of use
§ Coherent design across the software packages
§ Frameworks used are Python asyncio and pybind11/C++
§ Build system is kept simple
§ Serious consideration given to the different end-users of the software
§ Strong emphasis placed on testing

9



J. J. Watson

Backup: IPCs

10


