QUANTUM ENTANGLEMENT NEAR OPEN TIMELIKE CURVES: THEORY AND EXPERIMENTAL SIMULATION

<u>E. Rebufello</u>^{1,2}, C. Marletto^{3,4,5}, V. Vedral^{3,4,5,6}, S.Virzì^{1,7}, F. Piacentini¹, A. Avella¹, M. Gramegna¹, I. P. Degiovanni¹, M. Genovese^{1,8}

¹INRIM, Strada delle Cacce 91, I-10135 Torino, Italy; ²Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy;
 ³Clarendon Laboratory, University of Oxford, Parks Road, Oxford, OX1 3PU, UK; ⁴Fondazione ISI, Via Chisola 5, Torino, 10126, Italy;
 ⁵Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore, 117543, Singapore;
 ⁶Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, 117542, Singapore;
 ⁷Università di Torino, via P. Giuria 1, 10125, Torino, Italy; ⁸ INFN - sezione di Torino, Via P. Giuria, 110125, Torino, Italy

General relativity: time is a general spacetime coordinate. Time travel is (in principle) allowed.

Closed timelike curve (CTC): a particle travels back in time affecting its past self, giving rise to causality issues (e.g.: grandfather paradox)

PSEUDO-DENSITY OPERATOR

The Pseudo-Density Operator (PDO) [Fitzsimmons et al., Sci. Rep. 5, 18281 (2015)] is a generalization of the density operator, it is defined for n qubits as:

$$R = \frac{1}{2^n} \sum_{i_1=0}^3 \cdots \sum_{i_n=0}^3 \left\langle \left\{ \sigma_{i_j} \right\}_{j=1}^n \right\rangle \otimes_{j=1}^n \sigma_{i_j} \qquad \begin{bmatrix} \sigma_0 = \mathbb{1} & \sigma_1 = X \\ \sigma_2 = Y & \sigma_3 = Z \end{bmatrix}$$

 $\left\langle \left\{ \sigma_{i_j} \right\}_{j=1}^n \right\rangle$ being the expectation value of the product of the results of an ensemble of separate von Neumann measurement events (E_1, \ldots, E_n) on the $(\sigma_1, \ldots, \sigma_n)$ qubits forming the state. PDO properties are:

• Hermitian, trace-one operator, with $R_B = \text{Tr}_A(R_{AB})$;

• Non-positive: negative eigenvalues are allowed, both spatial and temporal correlations can be described;

. . .

TIME TRAVEL IN QUANTUM MECHANICS

G: quantum gate causing the unitary evolution U on the joint subspace.
[Deutsch, Phys. Rev. D 44, 10 (1991)]

Consistency condition:

 $\operatorname{Tr}_{no}\left(U\left(\rho_{no}\otimes\rho_{CTC}\right)U^{\dagger}\right)=\rho_{CTC}$

QUANTUM OPTICAL SIMULATION

MODEL

For this OTC, the pseudo-density matrix is:

$$R_{123} = \frac{1}{8} \left(\mathbb{1}_{123} - \Sigma_{12} + \Sigma_{23} - \Sigma_{13} \right)$$

with $\Sigma_{ij} = X_i X_j \mathbb{1}_k + Y_i Y_j \mathbb{1}_k + Z_i Z_j \mathbb{1}_k$

RECONSTRUCTED PDO

CTCs cause non- linearity!

Optical simulations: Lloyd et al., PRL 106 040403 (2011); Ringbauer et al., Nat. Comm. 5 4145 (2014)

With the density matrix formalism, being qubits 1 and 2 initially maximally entangled, in the chronology violation region:

 $E_{12} + E_{13} > 1$

Entanglement monogamy is violated! Possible solutions:

• non-linear quantum evolution;

SHG: Second-harmonic generation; BBO: β -barium borate crystal; H: half-wave plate; Q: quarter-wave plate; PBS: polarising beam splitter; IF: interference filter.

- entangled photons in the state $|\psi_{-}\rangle = \frac{1}{\sqrt{2}} (|HV\rangle |VH\rangle)$ are produced via type-II parametric down-conversion.
- two polarization measurements (Q2 and Q3) can be performed in sequence on branch A; one (Q1) can be performed on branch B.
- photons are detected by two single photons avalanche diodes.

PDO RECONSTRUCTION RULES

- Traditional quantum tomography fails to reconstruct R_{123} : new rules are needed.
 - I. Measure the whole set $\{X, Y, Z\}$ on Q_2 and Q_3 , including all cross-correlations between different observables): $R_{23} = \frac{1}{4} (I_{23} + \Sigma_{23})$ (Unphysical, negative eigenvalues)
 - II. Measure the whole set $\{X, Y, Z\}$ on Q_1 and Q_2 : $R_{12} = \frac{1}{4} (I_{12} - \Sigma_{12})$

MONOGAMY VIOLATION

Entanglement monogamy:

 $C_{nm} + C_{mk} \le 4$

with C_{nm} being the CHSH inequality value for the qubits n and m. Our results:

 $C_{12}^{(exp)} + C_{23}^{(exp)} = 5.52 \pm 0.03$ $C_{12}^{(exp)} + C_{13}^{(exp)} = 5.42 \pm 0.07$ $C_{23}^{(exp)} + C_{13}^{(exp)} = 5.55 \pm 0.07$

More than 20 standard deviations violation of the classical bound!

• pseudo-density operators.

Published on Nat. Comm. **10**, 182 (2019): DOI: 10.1038/s41467-018-08100-1

- III. Measure the whole set $\{X, Y, Z\}$ on Q_1 and Q_3 : $R_{13} = \frac{1}{4} (I_{13} - \Sigma_{13})$
- IV. Measure the whole set $\{X, Y, Z\}$ on Q_1 and Q_2), followed by a measurement on Q_3 identical to the one occurred on Q_2 .

 $R_{13} = \text{Tr}_2[R_{123}]$ cannot be reconstructed with the canonical method of acquiring measurements for the three-point correlations and averaging over Q2. This because:

 $\Pi_{\psi} = |\psi\rangle\!\langle\psi| : \operatorname{Tr}\left[\Pi_{\psi}R_{123}\right] < 0$

Not a real probability!

CONCLUSIONS

- We implemented the first quantum optical simulation of an OTC, reconstructing the pseudo-density operator R_{123} ;
- The reconstructed R_{123} and its reduced matrices are all in good agreement with the theoretical expectations;
- We measured a strong violation of the monogamy of entanglement within the OTC, something forbidden with the traditional density matrix description, but predicted by the PDO.
- Extension to other frameworks, e.g.: entangled particle falling into an evaporating black hole.