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Black Holes

Black Holes (BH) are fundamental objects in Gravitation, and
in Physics, predicted classically in General Relativity (GR) with
intriguing consequences in quantum physics.

BHs turn out to have a finite, non-zero, temperature. Thus,
they emit (in quantum theory) “Hawking” radiation with a
perfect thermal spectrum.
One can actually attach an entropy to the BH:

SBH =
kc3

~G
A

4

This shows a very deep, fundamental, relation between
Gravitation, Thermodynamics, Geometry and Quantum
Theory.
But..., what do we mean by A?
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Black Holes and the Event Horizon

Classically, the characteristic feature of a BH is its event
horizon EH: the boundary of the region from where one can
send signals to infinity —one assumes infinity is well-defined.



The Event Horizon (EH)
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Black Holes are teleological and too global

The EH is commonly identified as the world-surface of
stationary BHs, and its area is A (essentially entropy).

However, this leads to unsurmountable practical problems for
dynamical BHs.
EH depends on the whole future evolution of the spacetime. In
fact, EHs can even start developing in flat regions of
spacetime! EHs are teleological.
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Teleology of the EH (observe central line!)
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How to tell if something is a BH or not?

How can one recognize, locally, the presence of a BH? For
instance, in numerical GR. Or in Astrophysics: what do we
mean by the sentence "there is a BH in the center of the
Galaxy"?
As a drastic example of the problems arising Hajicek (Phys. Rev. D

36 (1987) 1065) argued that the structure of the EH can be
radically changed, and even fully destroyed, by changing the
geometry of the spacetime in a Planck size neighbourhood.



Closed trapped surfaces

It is only natural to turn to
closed trapped surfaces, the

hallmark of gravitational
collapse.



Trapped surfaces



The key idea in GR: trapped surfaces

In 1965 Penrose introduced a new important concept: closed
trapped surfaces.

These are closed surfaces (usually topological spheres) such
that their area tends to decrease locally along any possible
future direction. (There is a dual definition to the past).
In the limit case where the area just does not increase (maybe
staying the same along some future direction), the surface is
called marginally trapped.
The traditional stationary Black Hole solutions have closed
trapped surfaces in the region inside the Event Horizon, and
only there. And the EH is foliated by marginally trapped
surfaces.
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“Normal situation”
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Possible trapping in contracting worlds
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Marginally trapped tubes



An obvious alternative to EHs: Marginally
trapped tubes

Using closed trapped surfaces, the case has been made for
quasi-local objects that might resolve the mentioned problems.
These are the Marginally Trapped Tubes (MTT)

MTTs are hypersurfaces foliated by closed (compact without
boundary) marginally trapped surfaces. If the MTT is
spacelike, it is termed dynamical or trapping horizon.
It is widely believed that closed (marginally) trapped surfaces
are the single most important ingredient in gravitational
collapse, and in the formation of BHs. Thus the idea of using
MTTs (or DHs) as a viable replacement for the EH looked
very promising.
Actually, MTTs satisfy laws of thermodynamics similar to
those of EH. In particular, their area (→ entropy) grows during
the collapse, and decreases with Hawking radiation.
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The case of spherically symmetric spacetimes

ds2 = gab(x
c)dxadxb + r2(xc)dΩ2 (a, b, · · · = 0, 1)

Here dΩ2 is the round metric on the 2-sphere and det gab < 0.

Thus, the round spheres (orbits of the SO(3) symmetry group,
defined by xc =consts.) have area 4πr2(xc)

These round spheres are trapped iff r < 2m, and marginally
trapped iff r = 2m, where m is the mass function:

2m ≡ r (1−∇µr∇µr)
Thus, there is a MTT at {r = 2m} (equivalently, where the
gradient of r is null). We call it A3H.
A3H can be timelike, null or spacelike depending on the sign of

gabm,a (r,b −m,b)
∣∣∣
A3H

Wherever dm ∧ dr = 0, A3H is null and a portion of an
isolated horizon: A3Hiso

In Schwarzschild, EH ≡ A3H ≡ A3Hiso
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Example: The spherically symmetric MTT (A3H)
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Case with a portion of Isolated Horizon A3H(iso)
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The spherically symmetric MTT: A3H

One can prove (Bengtsson & JMMS, PRD 83 (2011) 044012) that

1 A3H is actually the only spherically symmetric MTT : the only
spherically symmetric hypersurface foliated by MTSs —be they
round spheres or not. (This is with respect to the given SO(3) group).

2 Any closed trapped surface cannot be fully contained in a
region with r > 2m.

3 Thus, all possible closed trapped surfaces must intersect the
region with r < 2m.

But, can closed trapped surfaces —other than round spheres—
penetrate outside A3H? How far can they go?
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A dynamical situation
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A3H does not bound general trapped surfaces

By doing perturbations on the A3H, one can also prove
(Bengtsson & JMMS, PRD 83 (2011) 044012) that

1 There are trapped surfaces (topological spheres) penetrating
both sides of A3H\A3Hiso

2 There exist MTTs penetrating both sides of A3H\A3Hiso

How far can these closed trapped surfaces go away from A3H?
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MTTs have problems of their own!

Hence (and unfortunately) MTTs have important problems:
first of all, they are highly non-unique, and they interweave
each other in complicated ways (A Ashtekar and G Galloway, Adv. Theor.

Math. Phys. 9 (2005) 1-30)

I am going to show that they also suffer from problems similar
to that of EHs: they are too much global.
This is linked to a fundamental property of closed trapped
surfaces: they are clairvoyant.
Can closed trapped surfaces penetrate outside all MTTs? Or
are they confined by (at least one of) them?
Can closed trapped surfaces actually penetrate into flat
regions?
Where can there be closed trapped surfaces?
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Trapped surfaces behave
wildly



Trapped surfaces even penetrate flat portions!
Example: imploding Vaidya spacetime

Vaidya

ds2 = −
(

1− 2m(v)

r

)
dv2 + 2dvdr + r2dΩ2

Consider the following simple mass function

m(v) =


0 v < 0
µv 0 ≤ v ≤M/µ
M v > µ

Thus, this is flat for v < 0, it ends in a Schwarzschild region with
mass M (v > M/µ), and it is self-similar in the intermediate
Vaidya region for 0 < v < M/µ.
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A closed trapped surface penetrating outside A3H
and into the flat region!

We constructed, analytically and explicitly, examples of
closed future-trapped surfaces going far away from r ≤ 2m
and entering well inside the flat region in the (self-similar)
Vaidya spacetime.



The closed future-trapped surface is composed of:

Flat region: a topological disk on an equatorial plane
Vaidya region: a topological cylinder on that equatorial plane
Schwarzschild region: another disk composed of two parts

a cylinder on that equatorial plane with r = γM
a final “capping" disk defined on r = γM

Here γ < 0.68514 is a constant, and µ > 1
4γ is required.
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Closed trapped surfaces are clairvoyant

Closed trapped surfaces may intersect the flat region
They do enter into the flat region (if the mass function rises fast
enough).

Closed trapped surfaces are highly non-local
They can have portions in a flat region of spacetime whose whole
past is also flat in clairvoyance of energy that crosses them
elsewhere to make their compactness feasible.
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The boundary B of the
region containing closed

trapped surfaces?



B is not an MTT!

One could have hoped that the boundary of the region
containing closed future-trapped surfaces has something to do
with the surface of the black hole.

However, the previous results imply that

1 Such a boundary B can penetrate flat portions of the
spacetime

2 In spherical symmetry, B is contained in the region r ≥ 2m,
and actually in the region r > 2m if it is not A3Hiso.

3 Therefore, B cannot be an MTT in general (because there are
no marginal trapped surfaces fully contained in the region
r > 2m where B is confined!).

This invalidates a claimed “theorem” by Hayward (PRD 49 (1994)

6467)
In general, one does not know where is B, not even for
spherical symmetry !!
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Black Hole Cores



The core of the trapped region

Going back to MTTs, we have put forward a novel strategy in
order to try and find a possible unique MTT.

The idea is based on the simple question:
what part of the spacetime is absolutely indispensable for the
existence of the black hole?
Surely enough, any flat region is certainly not essential for the
existence of the black hole.
What is?
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Definition of Core

Definition
A region Z is called the core of the region with closed
future-trapped surfaces if it is a minimal closed connected set that
needs to be removed from the spacetime in order to get rid of all
such closed future-trapped surfaces, [and such that any point on the
boundary ∂Z is connected to B in the closure of the remainder].

Here, “minimal" means that there is no other set Z ′ with the
same properties and properly contained in Z .
The final technical condition is needed because one could
identify a particular removable region to eliminate the
future-trapped surfaces, excise it, but then put back a tiny but
central isolated portion to make it smaller. However, this is
not what one wants to cover with the definition.
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A surprising theorem!!

We already know that closed future TSs must intersect the
region {r < 2m}.

However, closed future-trapped surfaces may lie on {r ≥ 2m}
almost completely.
More precisely:

Theorem (Bengtsson and JMMS, PRD 83 (2011) 044012 )

In spherically symmetric spacetimes, there are closed future-trapped
surfaces (topological spheres) penetrating both sides of the
apparent 3-horizon A3H\A3Hiso with arbitrarily small portions
inside the region {r < 2m}.



A surprising theorem!!

We already know that closed future TSs must intersect the
region {r < 2m}.
However, closed future-trapped surfaces may lie on {r ≥ 2m}
almost completely.

More precisely:

Theorem (Bengtsson and JMMS, PRD 83 (2011) 044012 )

In spherically symmetric spacetimes, there are closed future-trapped
surfaces (topological spheres) penetrating both sides of the
apparent 3-horizon A3H\A3Hiso with arbitrarily small portions
inside the region {r < 2m}.



A surprising theorem!!

We already know that closed future TSs must intersect the
region {r < 2m}.
However, closed future-trapped surfaces may lie on {r ≥ 2m}
almost completely.
More precisely:

Theorem (Bengtsson and JMMS, PRD 83 (2011) 044012 )

In spherically symmetric spacetimes, there are closed future-trapped
surfaces (topological spheres) penetrating both sides of the
apparent 3-horizon A3H\A3Hiso with arbitrarily small portions
inside the region {r < 2m}.



A surprising theorem!!

We already know that closed future TSs must intersect the
region {r < 2m}.
However, closed future-trapped surfaces may lie on {r ≥ 2m}
almost completely.
More precisely:

Theorem (Bengtsson and JMMS, PRD 83 (2011) 044012 )

In spherically symmetric spacetimes, there are closed future-trapped
surfaces (topological spheres) penetrating both sides of the
apparent 3-horizon A3H\A3Hiso with arbitrarily small portions
inside the region {r < 2m}.



Cores in spherical symmetry

From this surprising theorem one derives:

Result
The region Z ≡ {r ≤ 2m(v, r)} is a core.

Result
In spherically symmetric spacetimes, Z = {r ≤ 2m} are the only
spherically symmetric cores of T . Therefore, ∂Z = A3H are the

only spherically symmetric boundaries of a core.
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An important remark

It should be observed that the concept of
core is global, and requires full knowledge of

the future.

However, A3H is quasilocal and can be
defined and identified by observing just

around it.

It is thus surprising, and perhaps with a
deep meaning, that A3H= ∂Z can happen
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Non-spherically symmetric cores

Proposition
There exist non-spherically symmetric cores of the future-trapped
region in spherically symmetric spacetimes.

Still, the identified core Z = {r ≤ 2m} might be unique in
the sense that its boundary ∂Z = A3H is a marginally
trapped tube.
This would happen if any MTT H other than A3H is such
that its causal future J+(H) is not a core —the core being a
proper subset of J+(H).
Then A3H would be selected as the unique MTT which is the
boundary of a core of the future-trapped region T .
And this could serve as a general definition, for non-spherically
symmetric situations.
However, it may also happen that all boundaries of cores are
MTTs...
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Thanks!

Grazie!

Thank you very much!
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