f School of Physics

Free University of Tbilisi

Sound Propagation in the Ellis Wormhole

$$
\begin{gathered}
\text { 22-25 Sep. } 2019 \\
\text { Torino, Itolly }
\end{gathered}
$$

Z詓卦 Osmanoy or George Butbaia

The presentition wis supported by Shota Rustaveli National Science Foundation of Georgia (SRNSFG) [MG-TG-19-1476]
yyormhole metrics

Ellis (1973)

$$
d s^{2}=-d t^{2}+d r^{2}+\left(a^{2}+r^{2}\right)\left(d \theta^{2}+\theta d \varphi^{2}\right)
$$

Wormhole metrics

Arsenadze \& Osmanov 2017
Kardashev et al. (2006,2007

$$
\frac{B^{2}}{8 \pi}>n \varepsilon
$$

Corotatio

Some history: TM15

Arsenadze \& Osmanov 2017

$$
\left.\begin{array}{ll}
& a \omega\left[b^{2}+l^{2}\right] \\
a \omega\left[b^{2}+r^{2}\right] & 1+a^{2}\left[b^{2}+r^{2}\right]
\end{array}\right)
$$

$\theta=\frac{\pi}{2} \quad \varphi(r)=a r$
$\phi=\varphi(r)+\omega t$

Some history: TM15

Arsenadze \& Osmanov 2017

Some history: TM15

Arsenadze \& Osmanov 2017

Some history: TM15

Arsenadze \& Osmanov 2017

Some history: TM15

Arsenadze \& Osmanov 2017

Some history: TM15

Arsenadke \& Osmanov 2017

Some history: TM15

Arsenadze \& Osmanov 2017

$$
\begin{aligned}
& \nabla_{\mu} T^{\mu v}=0 \\
& \nabla_{\mu} J^{\mu}=0
\end{aligned}
$$

$$
T^{\mu v}=\rho h u^{\mu} u^{v}+p g^{\mu v}
$$

$$
h=1+\varepsilon+p / \rho
$$

$$
J^{\mu}=\rho u^{\mu}
$$

GRFID Equations

Linearivation

$\nabla_{\mu} T^{\mu \nu}=0$

$$
\nabla_{\mu} J^{\mu}=0
$$

$p \rightarrow p^{(0)}+p^{(1)}$
$\rho \rightarrow \rho^{(0)}+\rho^{(1)}$
$v \rightarrow v^{(0)}+v^{(1)}$

GRFID Equations

Linearivation

$\nabla_{\mu} T^{\mu \nu}=0$

$$
\nabla_{\mu} J^{\mu}=0
$$

$p \rightarrow p^{(0)}+p^{(1)}$
$\rho \rightarrow \rho^{(0)}+\rho^{(1)} \quad$ Spherical symmetry
$v \rightarrow v^{(0)}+v^{(1)}$

GRFID Equations

PDEs

$\partial_{t} \rho+\alpha\left(\partial_{r}+\frac{2 r}{a^{2}+r^{2}}\right) v=0$
$\alpha \partial_{t} v+\beta \partial_{r} \rho=0$
$\alpha=\rho_{0}+p_{0}$
$p=\beta \rho$

GRFID Equations

PDEs

$\partial_{t} \rho+\alpha\left(\partial_{r}+\frac{2 r}{a^{2}+r^{2}}\right) v=0$
$\alpha \partial_{t} v+\beta \partial_{r} \rho=0$

$$
f(r, a)=\frac{2 r}{a^{2}+r^{2}}
$$

GRFID Equations

PDEs

$\partial_{t} \rho+\alpha\left(\partial_{r}+\frac{2 r}{a^{2}+r^{2}}\right) v=0$
$\alpha \partial_{t} v+\beta \partial_{r} \rho=0$

$$
f(r, a)=\frac{2 r}{a^{2}+r^{2}}
$$

GRFID Equations

PDEs

$\partial_{t} \rho+\alpha\left(\partial_{r}+\frac{2 r}{a^{2}+r^{2}}\right) v=0$
$\alpha \partial_{t} v+\beta \partial_{r} \rho=0$

$$
f(r, a)=\frac{2 r}{a^{2}+r^{2}}
$$

ne function is
 Smooth

GRFDD Equations

Separation of variables

$\partial_{t} \rho+\alpha\left(\partial_{r}+\frac{2 r}{a^{2}+r^{2}}\right) v=0$
$\alpha \partial_{t} v+\beta \partial_{r} \rho=0$

$$
f(r, a)=\sum_{i=0}^{\frac{n-1}{2}}(-1)^{i} \frac{2 r^{2 i+1}}{a^{2 i+2}}+O\left(r^{2 n+2}\right)
$$

GRFD Equations

Near center approximation: $r \lll$

$$
\begin{aligned}
& \rho=T(t) R(r) \\
& \ddot{T}(t)+\omega^{2} T(t)=0 \\
& \frac{d^{2} R}{d r^{2}}+f(a, r) \frac{d R}{d r}+\omega^{2} R
\end{aligned}
$$

GRFID Equations

Near center approximation: $r \ll \Omega$

$$
\rho=T(t) R(r)
$$

$$
\ddot{T}(t)+\omega^{2} T(t)=0
$$

$$
\frac{d^{2} R}{d r^{2}}+f(a, r) \frac{d R}{d r}+\sigma^{2} R
$$

$$
R(r)=C_{1} e^{-\frac{r^{2}}{a^{2}}} H_{k}\left(\frac{r}{a}\right)+C_{2} e^{-\frac{r^{2}}{a^{2}}} F_{11}\left(\frac{2-\omega^{2} a^{2}}{4}, \frac{1}{2}, \frac{r^{2}}{a^{2}}\right)
$$

H - Hermite polynomial
F - Kummer's function of he first kind

GRFD Equations

Near center approximation: $r \ll \Omega$

$$
\omega_{n}=\left(\frac{1+2 n}{a^{2}}\right)^{\frac{1}{2}}
$$

GRFID Equations

Dispersion Relation

$\omega=\left(a \frac{2+a^{2} k^{2}}{a^{2}}\right)^{\frac{1}{2}}$

GRFID Equations

Far center approximation: $r \gg a$

$$
f(r, a)=\sum_{i=0}^{\frac{n-1}{2}}(-1)^{i} \frac{2 a^{2 i}}{r^{2 i+1}}+O\left(r^{-n-2}\right)
$$

$$
R(r)=\frac{1}{r}\left(C_{1} e^{-i \omega r}-i C_{2} e^{i \omega r}\right)
$$

GRFID Equations

Far center approximation: $r \gg$ a

$$
f(r, a)=\sum_{i=0}^{\frac{n-1}{2}}(-1)^{i} \frac{2 a^{2 i}}{r^{2 i+1}}+O\left(r^{-n-2}\right)
$$

$R(r)=\frac{1}{r}\left(C_{1} e^{-i \omega r}-i C_{2} e^{i \omega r}\right)$

Nothing in erecuing

GRFID Equations

Near center approximation: $r \ll \Omega$

$$
\omega_{n}=\left(\frac{1+2 n}{a^{2}}\right)^{\frac{1}{2}}
$$

GRFID Equations

Near center approximation: $r \ll$ a

$$
\omega_{n}=\left(\frac{1+2 n}{a^{2}}\right)^{\frac{1}{2}}
$$

Whe observe ipace comes from radiation

GRFID Equations

Near center approximation: $\mathrm{r} \ll \Omega$

$$
\omega_{n}=\left(\frac{1+2 n}{a^{2}}\right)^{\frac{1}{2}}
$$

The next stex is to understan influence of suand on an ission pattern

f
Conclusions
$>$ For both cases we have found the solutions by separation of variables
xat round that for the near center approximation the (12 amental frequencies might exist

- We have derived dispersiom relation in near center
f
Conclusions
> Fior both cases we have found the solutions by separation of variables
$>$ We have found that for the near center approximation the fundamental frequencies might exist
- We have derived dispersiom relation in near center

$f \quad$ Conclusions

DFor both casess have found the solutions by separation of found that for the near center approximation the ental frequencies might exist
$>$ We have derived dispersion relation in near center

References
-Ellis, H.G., 1973, JMP, 14, 104
>Kardashev N.S. et al., 2006, AstriRep. 50, \&
$>$ Kardashev N.S. et all., 2007, IJIVIPD, 16, \bar{y}
$>$ Arsenadze G. \& Osmun Z. 2017, IJMPD, 26, 1750153

MANY THANKS

