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Motivation

Let H be a time-independent Hamiltonian.

|ψ(t)〉 = e−iHt |ψ0〉
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Figure: Time evolution of a quantum system
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Figure: Fast forward and rewind of a quantum system.



Motivation

We want to warp the evolution time of a quantum system, but

• Without resorting to relativity.

• Without knowledge of the system (i.e.: its Hamiltonian or its
interaction with other systems)

• With universal protocols.

We allow for probabilistic protocols, as long as they are also
heralded (that is, we must know if the protocol succeeds).
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Context

Figure: One way to influence an unknown system. 1

1Miguel Navascues, Phys. Rev. X 8, 031008 (2018)



Matrix Polynomials

Example

Suppose that n probes are prepared in the state |ψ〉P and that
each one interacts with the system via the unitary W .

If, after the interaction, we post-select on the probes being in the
state |0...0〉P , the final state of the system will be

〈0...0|P W (V ⊗ 1) |φ〉S |ψ〉P



Matrix Polynomials

Example

Suppose that n probes are prepared in the state |ψ〉P and that
each one interacts with the system via the unitary W .
If, after the interaction, we post-select on the probes being in the
state |0...0〉P , the final state of the system will be

〈0...0|P W (V ⊗ 1) |φ〉S |ψ〉P



Matrix Polynomials

Example

By writing

|ψ〉P =
∑
~k

c~k |k1 · · · kn〉

and
Uk = 〈0|P W (V ⊗ 1) |k〉P .

We get

|φfinal〉S =
∑
~k

ck1···knUk1 · · ·Ukn |φ〉S .
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Central polynomials

Definition
A polynomial f (x1, · · · , xn) ∈ K 〈X 〉 is a central polynomial for a
ring R if

1. for any r1, · · · , rn ∈ R, f (r1, ..., rn) lies in the center of R.

2. f is not identically zero.

3. the constant term of f is zero.

Theorem (Formanek, Razmyslov)

Mn(K ) has a central polynomial.

Remark
Formanek’s polynomial is of the form F (x , y1, · · · , yn),
homogeneous of degree n2 − n in x and linear in yi .
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Central polynomials

Example

Let A,B ∈ M2. Consider the polynomial

[A,B]2

.

As [A,B] is traceless, [A,B] = aX + bY + cZ .

X =

(
0 1
1 0

)
Y =

(
0 −i
i 0

)
Z =

(
1 0
0 −1

)
Therefore,

[A,B]2 ∝ 1.
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Our setup

Figure: A more general interaction between systems and probes, with the
targeting assumption.



Tensor polynomials

These protocols correspond to polynomials of the form

f (V ,U1, · · · ,Un) =
∑

k

ckpk (V ,U1, · · · ,Un)⊗· · ·⊗qk (V ,U1, · · · ,Un).

This extra structure allows for more interesting behaviours.

Theorem
There exist polynomials in Mn ⊗ · · · ⊗Mn which are proportional
to PS , the projector onto the symmetric subspace; to PA, the
projector onto the antisymmetric subspace and to permutations of
the tensor factors (i.e., SWAPs).
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Main result

Theorem
Let P be a protocol on n copies of a system of dimension d with
the targeting assumption. If at the end of a heralded success,
system i is in state ψ(Ti ) and the protocol took time T ′, then it
must be that ∑

i :Ti<0

(d − 1)|Ti |+
∑

j :Tj>0

Tj ≤ nT ′.

Moreover, this inequality is optimal.



Take-home messages

1. Control of a system can be used to get some heralded control
of another system

2. Evolution time behaves a bit like energy: it cannot be created
or destroyed, but it can be transferred between systems or
wasted.

3. Evolution time can be inverted at a cost depending on
dimension.


