
Accelerated radio astronomy with RICK
De Rubeis Emanuele, Claudio Gheller, Giovanni Lacopo, Giuliano Taffoni,

Luca Tornatore

Missione 4 • Istruzione e RicercaICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Spoke 3 General Meeting, Elba 5-9 / 05, 2024

Missione 4 • Istruzione e RicercaICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Scientific Rationale

Why HPC for radio astronomy?

Current and upcoming radio-interferometers are
expected to produce volumes of data of increasing
size. This means that current state-of-the-art
software needs to be re-designed to handle such
unprecedented data challenge.

Imaging in radio astronomy represents one of the
most computational demanding steps of the
processing pipeline, both in terms of memory request
and in terms of computing time.

Sweijen et al. (2022)

For example, this over 7 billions pixels image can take ~250,000 core hours!

Missione 4 • Istruzione e RicercaICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Technical Objectives, Methodologies and Solutions

RICK (Radio Imaging Code Kernels) is a code that addresses the w-stacking
algorithm (Offringa+14) for imaging, combining parallel and accelerated solutions.

• C, C++, CUDA, HIP

• MPI & OpenMP for CPU parallelization

• The code is now capable of running full on GPUs, using CUDA, HIP or OpenMP
for offloading

• An optimized version of the reduce has been developed on both CPU (combining
MPI+OpenMP) and GPU (using NCCL or RCCL, for Nvidia and AMD respectively);
the FFT is done through the cuFFTMp library for Nvidia

• Currently under benchmarking on Leonardo (CINECA, No.4 Top500 June 23) Adapted from Gheller et al. (2023)

G
PU

 (C
U

D
A,

 O
pe

nM
P)

Missione 4 • Istruzione e RicercaICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Technical Objectives, Methodologies and Solutions

Why do we need multiple GPU?

Modern and future radio interferometers will produce a huge amount of data, that hardly fit into the memory of a
single GPU (not even a single node)

The solution is to distribute the problem among multiple GPUs and multiple nodes

Missione 4 • Istruzione e RicercaICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Technical Objectives, Methodologies and Solutions

NVIDIA Collective Communication Library (NCCL)

NCCL is a library of multi-GPU collective communication used to support the Reduce operation.

• Provides fast collectives over multiple GPUs both intra- and inter-node.

• Supports a variety of interconnection technologies (e.g. NVLink, PCIe).

• NCCL closely follows the popular collectives API defined by MPI, so can be very ’’natural’’ to use.

Missione 4 • Istruzione e RicercaICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Technical Objectives, Methodologies and Solutions

NVIDIA Collective Communication Library (NCCL)

NCCL implements the Reduce operation as an intra-node ring, and an inter-node ring, when GPUs assigned to the
main tasks communicate with RDMA with GPUs in different nodes without passing through the CPUs.

Missione 4 • Istruzione e RicercaICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Technical Objectives, Methodologies and Solutions

NVIDIA Collective Communication Library (NCCL)

NCCL implements the Reduce operation as an intra-node ring, and an inter-node ring, when GPUs assigned to the
main tasks communicate with RDMA with GPUs in different nodes without passing through the CPUs.

The requirement of a dedicated stream for the Reduce comes from the presence
of asynchronous memory copies that collided with the ones within a previous
function call

Missione 4 • Istruzione e RicercaICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Technical Objectives, Methodologies and Solutions

cuFFTMp

Fast Fourier Transform (FFT) is a critical operation in radio astonomy, because it determines the relationship
between the ‘’observed’’ and the ‘’desired’’ data (the final image).

For the FFT step, RICK now implements the cuFFTMp library, that enables the distribution of the FFT problem
using NVSHMEM.

NVSHMEM uses asynchronous, GPU-initiated, data
transfers, avoiding synchronization overheads
between the CPU and the GPU.

Missione 4 • Istruzione e RicercaICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Technical Objectives, Methodologies and Solutions

cuFFTMp

Data are distributed among multiple GPUs and inverse-transformed.

Starting data distributed among N
MPI tasks on the CPU

Data copied among N GPUs Z2Z 2D FFT transformed data Data re-distributed in the natural
order on GPUs

Data copied back to CPU

.

1

2

N

Missione 4 • Istruzione e RicercaICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Technical Objectives, Methodologies and Solutions

cuFFTMp

v We may need to to this FFT process even 100s-1000s times, and each time we need to create and destroy a
descriptor, which is the ad-hoc data structure used by the cuFFTMp library for the FFT.

ü This was critical for the performance, but we overcame this problem using CUDA kernels to write the to-be-
transformed data for each loop, and then writing them directly inside the descriptor.

v The joint usage of NVSHMEM and NCCL can cause severe runtime errors during the FFT.

Ø There is the possibility to switch off NCCL support for NVSHMEM at runtime by setting
NVSHMEM_DISABLE_NCCL=1.

Missione 4 • Istruzione e RicercaICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Accomplished Work, Results

Currently, we are testing RICK on Leonardo (CINECA) using NVIDIA HPC-SDK (v 23.11). The testing dataset are
real, LOFAR-VLBI data, the closest facility to SKA in terms of overall data size.

Comparing the code on GPUs, with respect to the one on CPUs, we obtained:

• for a small input dataset (4GB) we reached a speed-up factor up to ~x27 for both Reduce and FFT

• for a large input dataset (530GB) we reached a speed-up factor of ~x175 for the Reduce and ~x32 for the FFT

Missione 4 • Istruzione e RicercaICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Accomplished Work, Results

Missione 4 • Istruzione e RicercaICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Timescale, Milestones and KPIs

KPI Target Deadline
Release of the v2.0 Release of RICK v2.0 December 31st, 2023

New Reduce and FFT on GPUs
available, code fully on GPUs

December 31st, 2023

Paper to be submitted Paper on the v2.0 release of the
code

M8

Release of the v.2.1 Weighting and uv-tapering,
parallel and accelerated version

M9

Optimization of memory
occupation on GPUs

M9

https://www.ict.inaf.it/gitlab/claudio.gheller/hpc_imaging/-/tree/merge?ref_type=heads

Missione 4 • Istruzione e RicercaICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Next Steps and Expected Results

• With RICK we test the benefits that the exploitation of HPC resources can bring to future generation of radio
interferometers, in our case for imaging data

• Preliminary results suggest that the improvement could possibly be huge, meaning that this can represent a
promising approach to the SKA (and precursors) data volumes

• The code is now capable of working fully on NVIDIA GPUs with CUDA.
Full AMD GPUs support is not yet available because of the lack of a proprietary distributed library for FFT (such
as cuFFTMp for NVIDIA)

• The large data size requires distributing the workload among multiple nodes: in return, we obtain that the
comunication becomes our main bottleneck. The key is the right choice of computational resources.

