
Recent Advances on PLUTO GPU Development and 
Astrophysical Applications

A. Mignone*

Collaborators: A. Suriano*, M. Rossazza* , S. Truzzi*, V. Berta*, M. Bugli

* Università di Torino

Missione 4 • Istruzione e RicercaICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Spoke 3 General Meeting, Elba 5-9 / 05, 2024



Missione 4 • Istruzione e RicercaICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

What is PLUTO ?
- PLUTO1,2 is a finite volume (FV) Godunov-type, fluid-particle hybrid code 

for plasma dynamics in astrophysics;

- Target: multidimensional compressible fluid / plasma with large Mach 
numbers;

-Multiphysics modular support: classical fluid dynamics à special 
relativistic MHD;

-Non-ideal physics: viscosity, thermal conduction, resistivity, heating, etc…

-Algorithm modularity: combination of different numerical schemes;

-Publicly available at http://plutocode.ph.unito.it (v. 4.4 – CPU version)

1Mignone et al.  ApJS (2007), 170, 228-242;  2Mignone et al, ApJS (2012), 198, 7 
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Fluid Equations, Finite Volume
-PLUTO is (primarily) an Eulerian code, solving conservation laws on a 

fixed / adaptive grid, e.g.:

-Shock-capturing relies on FV formalism, where equations are solved 
using the integral representation: 
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MHD equations, conservative form
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Hybrid Fluid – Particles Methods
-Target: Large-scale non-thermal emission from high-energy sources.

-Lagrangian Particles (LP)1: Ensemble of electrons close in physical 
space, characterized by a distribution function f=dN/dE(ε,t)	
representing the actual particle number density as a function of 
energy ε. 

-LP are transported at the fluid speed (dx/dt	=	vg) but their spectra is 
evolved by solving, for each particle, a Fokker-Planck equation:

Single LP, Fermi I
Shock Acceleration

1Vaidya et al.  ApJS (2018), 865, 144V
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PLUTO (CPU version):
-Written in C (~110,000 lines) and C++ (6,000 lines) and python (user 

interface);

-Supports single- and multi-core parallel computations through the 
MPI library. Tested up to up to 262,144 cores and several different 
platforms.

-Computations may be performed on

• Static grid : single fixed grid (library free); 

• Adaptive grid: multiple refined, block-structured nested                                      
grids (CHOMBO Lib)
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PLUTO Worldwide Distribution
-Heterogeneos application 

domain: Planet Formation / Stellar & 
extragalactis Jets / Radiative shocks / 
accretion disks / Jet launching / 
magnetospheric accretion / Jet star 
interaction / Plasma instabilities (MRI, 
KHI, CDI, RTI, etc…)

-PLUTO 4.3, (2018-2021)              
∼ 1360 downloads

-PLUTO 4.4, (2020-2021)              
∼ 460 downloads 

• PLUTO 4.3
• PLUTO 4.4
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Objectives: GPU Porting + Revision Process + Public release 
Aims:

1. Exhaustive porting of the code to GPU;

2. Complete Code revision (PLUTO is 18 years old !);

3. Public release (à “gPLUTO”).

-Roadmap started in 2020, à full code rewrite + NVIDIA support [except for a few kernels, e.g. 
initialization, I/O, user interface, etc…];

-C++ & OpenACC (a high-level directive based programming model developed by NVIDIA) chosen 
as our programming paradigm.
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Activities Timeline

-Code rewritten from scratch (!) in 2020: with simple HD module (miniapp, ∼1000 lines);

-Incrementally added modules & kernels; 

-Switched to C++ to exploit more versatile construct (e.g., templates, classes, vectors);

-Today: 60 % of the original code ported successfully to GPU.

2020: First mini-app (∼1000 lines) in C. 

2021: Added OpenACC functionality

2022: Addition of several new kernels 

2023: Moved to C++

2025: 1st Public Release
2024: Optimization phase,
Extensions to Lagrangian particles, 
High-order methods

Synergy with the SPACE CoE
(https://www.space-coe.eu/) 
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OpenACC: Basic Facts

-Why OpenACC ? à i) high-level, ii) requires few changes to the code, iii) directive-based;

-Two main directives or pragmas: i) compute pragmas & ii) data pragmas.

-The   #pragma acc parallel loop directive indicates that a 
loop can be parallelized and executed in parallel on the 
GPU:

-The #pragma enter data copying directive 
explicitly transfers data from the CPU 
memory to the GPU memory.

#pragma acc parallel loop vector
for (i = 0; i < N; i++){

// Loop body
// ... Things to do here ... 

}

#pragma acc enter data copyin (A,B)
// ... Code where A ad B are used in GPU computations
#pragma acc exit data delete (A,B)
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OpenACC: Keypoints

Data Locality: reduce data movement between CPU and GPU 
memory as much as possible. 

Data transfer major bottleneck à solution straightforward: all 
computational part of the program should reside in GPU 
memory !

Private Variables: GPU threads should perform identical 
operations but on different memory addresses. 

Without precautions, simultaneous operations are performed 
at the same memory address leading to incorrect results. 
à Private variables have local scope and are allocated 
individually for each thread.

int V[8];
int A[NX][NY][NZ];

#pragma acc parallel loop collapse(3) private(V[:8])
for (i = 0; i < NX; i++){
for (j = 0; j < NY; j++){
for (k = 0; k < NZ; k++){

A[i][j][k] *= 2.0;

V[0] = ...;
V[1] = ...; 
...

}}}
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OpenACC: Keypoints

Coalesced Memory Access: consecutive threads access 
consecutive memory addresses. Memory coalescing is a 
technique which allows optimal usage of the global memory 
bandwidth.

à the GPU can perform memory transactions more efficiently, 
reducing the overall memory access time and improving 
performance.

à Requires different array ordering so that the inner loop we’re 
accelerating should be also the fastest index of the 
multidimensional array as in this example.

#pragma acc parallel loop vector
for (i = ibeg; i <= iend; i++){

#pragma acc loop seq
for (nv = 0; nv < NVAR; nv++) {

// MUST REVERSE INDICES HERE:

v[i][nv] *= 2;  à v[nv][i] =*= 2;
}

}

Using C++ templates: v[nv][i]  à v(i,nv)
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OpenACC: Particles

-Particle are constantly injected and deleted. 

-Previous versions (PLUTO 4.4) based on  linked list.

-Problem: linked list not easy parallelizable on GPU ! 
à Need to go back to arrays à Classes (C++)

-Parallelizeble structure, e.g.:

-Reshaping memory is expensive: memory allocation in 
chunks:

Class particleContainer:

Class position  à pos(i=0,nParticles)

Class velocity  à vel(i=0,nParticles)

Class energy spectra  à eng(i=0,nParticlesxnbins)

std::vector<double*> pos;
for(int i = 0; i < nChunks; i++){

pos.push_back( new double[chunkSize] );
}

#pragma acc parallel loop present(pc)
for (i = 0; i < pc.Size(); i++){

partContainer.pos(i) = 4.56;
}
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Results: MHD 3D
-Weak scaling on the 3D version of the Orszag-Tang vortex;

-where

-Scaling conducted on Leonardo equipped nodes with Intel Ice Lake CPU 
and 4 NVIDIA A100 ("Da Vinci" variant) up to 256 nodes ( = 1024 GPU).

-Weak scaling (6403 grid cells per node ) using 3 different configurations
1. CPU + MPI /    2. GPU + MPI /   3. GPU + NCCL
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Results: 1) CPU-GPU Speedup

Execution time of the weak scaling tests for 400 
steps. A speed-up factor in the ≈ 28.4 − 33.6 range is 
measured.

In the figure, the values represent the
number of steps and grid points handled by 
each node.



Missione 4 • Istruzione e RicercaICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Results: 2) Weak Scaling (Synchronous version)

Version #1: synchrounous Send/Recv calls:

à Not optimal for GPU computations ß

// Fill buffer 
send_bufL[] ß data()
send_bufR[] ß data()

// Send / Receive data
MPI_Sendrecv (send_bufL, count, MPI_DOUBLE, procL, 

recv_bufR, count, MPI_DOUBLE, procR, ... )
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Results: 2) Weak Scaling (Asynchronous version)

Version #2: asynchrounous Send/Recv calls:

// Initiate ascynchrounous receive
MPI_Irecv (recv_buf, ... , recv_proc, ... , MPI_recv_req )

// Fill buffer
snd_bufL[] ß data()

// Send data
MPI_Isend (send_buf, ... , send_proc, ... , MPI_send_req)

// Wait for MPI receive request to complete
MPI_Waitall ( ... , MPI_recv_req,  ...)

// Unpack buffers
data() ß recv_buf[]

// Wait for MPI send request to complete
MPI_Waitall ( ... , MPI_send_req,  ...)
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Next Steps and Expected Results

-Extension of asynchrounous inter-GPU communication to NCCL;

-Improving particle scaling on large number of CPUs and GPUs;

-Addition of non-Cartesian geometries;

-Addition of non-ideal terms (viscosity, thermal conduction, resistivity);

-Addition of cosmic-rays particles and dust particles;

-Adaptive Mesh Refinement.
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THANK YOU


