
Recent Advances on PLUTO GPU Development and
Astrophysical Applications

A. Mignone*

Collaborators: A. Suriano*, M. Rossazza* , S. Truzzi*, V. Berta*, M. Bugli

* Università di Torino

Missione 4 • Istruzione e RicercaICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Spoke 3 General Meeting, Elba 5-9 / 05, 2024

Missione 4 • Istruzione e RicercaICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

What is PLUTO ?
- PLUTO1,2 is a finite volume (FV) Godunov-type, fluid-particle hybrid code

for plasma dynamics in astrophysics;

- Target: multidimensional compressible fluid / plasma with large Mach
numbers;

-Multiphysics modular support: classical fluid dynamics à special
relativistic MHD;

-Non-ideal physics: viscosity, thermal conduction, resistivity, heating, etc…

-Algorithm modularity: combination of different numerical schemes;

-Publicly available at http://plutocode.ph.unito.it (v. 4.4 – CPU version)

1Mignone et al. ApJS (2007), 170, 228-242; 2Mignone et al, ApJS (2012), 198, 7

Missione 4 • Istruzione e RicercaICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Fluid Equations, Finite Volume
-PLUTO is (primarily) an Eulerian code, solving conservation laws on a

fixed / adaptive grid, e.g.:

-Shock-capturing relies on FV formalism, where equations are solved
using the integral representation:

Low Frequency

! ⌧ !p, ! ⌧ !c, ! ⌧ ⌫pe, ! ⌧ ⌫ep

L � c

!p
, L � Rc, L � �mfp, L � �mfp

MHD equations primitive form

@⇢

@t
+r · (⇢u) = 0 (Continuity)

⇢

✓
@u

@t
+ u ·r · u

◆
= �rp 1

cJ⇥B (Eq. of motion)

@(⇢e)

@t
+r · (⇢eu) = �pr · u (Thermodynamics I law)

@B

@t
+r⇥E = 0 (Faraday)

MHD equations, conservative form

@⇢

@t
+r · (⇢u) = 0 (Mass cons.)

@(⇢u)

@t
+r ·


⇢uu� BB

4⇡
+

✓
p+

B2

8⇡

◆�
= 0 (Momentum cons.)

@E

@t
+r ·

✓
E + p+

B2

8⇡

◆
u� (u ·B)

4⇡
B

�
= 0 (Energy cons.)

@B

@t
+r · (uB �Bu) = 0 (Mag. flux cons.)

Complementary relations:

J =
c

4⇡
r⇥B (Ampere)

E+
u

c
⇥B = 0 (Ohm)

r ·B = 0 (Divergence� free)

⇢e = ⇢e(⇢, p) (EoS/Closure)

Numerical Di↵usion
@U

@t
+ a

@U

@x
= 0 , a > 0

Un+1
i � Un

i

�t
+ a

Un
i � Un

i�1

�x
= 0

Un+1
i Un

i�1

@U

@t
+ a

@U

@x
=

a�x

2

✓
1� a

�t

�x

◆
@2U

@x2
+H.O.T.

Adaptive Hybrid Integration

|rp|
p

> ✏�x�1 and r · u < 0

1

Missione 4 • Istruzione e RicercaICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Hybrid Fluid – Particles Methods
-Target: Large-scale non-thermal emission from high-energy sources.

-Lagrangian Particles (LP)1: Ensemble of electrons close in physical
space, characterized by a distribution function f=dN/dE(ε,t)	
representing the actual particle number density as a function of
energy ε.

-LP are transported at the fluid speed (dx/dt	=	vg) but their spectra is
evolved by solving, for each particle, a Fokker-Planck equation:

Single LP, Fermi I
Shock Acceleration

1Vaidya et al. ApJS (2018), 865, 144V

Missione 4 • Istruzione e RicercaICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

PLUTO (CPU version):
-Written in C (~110,000 lines) and C++ (6,000 lines) and python (user

interface);

-Supports single- and multi-core parallel computations through the
MPI library. Tested up to up to 262,144 cores and several different
platforms.

-Computations may be performed on

• Static grid : single fixed grid (library free);

• Adaptive grid: multiple refined, block-structured nested
grids (CHOMBO Lib)

13

)LJXUH����6SHHGXS�DV�D�IXQFWLRQ�RI�WKH�QXPEHU�RI�FRUHV��EOXH�\HOORZ�IRU���DQG���WKUHDGV�SHU
FRUH��UHVSHFWLYHO\��IRU�WKH�VHOHFWHG��'�0+'�WHVWV�

7DEOH����'DWD�YDOXHV�REWDLQHG�IRU�WKH�VSHHGXS�VKRZQ�LQ�WKH�SUHYLRXV�ILJXUH�

13

)LJXUH����6SHHGXS�DV�D�IXQFWLRQ�RI�WKH�QXPEHU�RI�FRUHV��EOXH�\HOORZ�IRU���DQG���WKUHDGV�SHU
FRUH��UHVSHFWLYHO\��IRU�WKH�VHOHFWHG��'�0+'�WHVWV�

7DEOH����'DWD�YDOXHV�REWDLQHG�IRU�WKH�VSHHGXS�VKRZQ�LQ�WKH�SUHYLRXV�ILJXUH�

BG/Q	MIRA	@	ANL	(USA)

MARCONI	KNL

Missione 4 • Istruzione e RicercaICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

PLUTO Worldwide Distribution
-Heterogeneos application

domain: Planet Formation / Stellar &
extragalactis Jets / Radiative shocks /
accretion disks / Jet launching /
magnetospheric accretion / Jet star
interaction / Plasma instabilities (MRI,
KHI, CDI, RTI, etc…)

-PLUTO 4.3, (2018-2021)
∼ 1360 downloads

-PLUTO 4.4, (2020-2021)
∼ 460 downloads

• PLUTO 4.3
• PLUTO 4.4

Missione 4 • Istruzione e RicercaICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Objectives: GPU Porting + Revision Process + Public release
Aims:

1. Exhaustive porting of the code to GPU;

2. Complete Code revision (PLUTO is 18 years old !);

3. Public release (à “gPLUTO”).

-Roadmap started in 2020, à full code rewrite + NVIDIA support [except for a few kernels, e.g.
initialization, I/O, user interface, etc…];

-C++ & OpenACC (a high-level directive based programming model developed by NVIDIA) chosen
as our programming paradigm.

Missione 4 • Istruzione e RicercaICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Activities Timeline

-Code rewritten from scratch (!) in 2020: with simple HD module (miniapp, ∼1000 lines);

-Incrementally added modules & kernels;

-Switched to C++ to exploit more versatile construct (e.g., templates, classes, vectors);

-Today: 60 % of the original code ported successfully to GPU.

2020: First mini-app (∼1000 lines) in C.

2021: Added OpenACC functionality

2022: Addition of several new kernels

2023: Moved to C++

2025: 1st Public Release
2024: Optimization phase,
Extensions to Lagrangian particles,
High-order methods

Synergy with the SPACE CoE
(https://www.space-coe.eu/)

Missione 4 • Istruzione e RicercaICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

OpenACC: Basic Facts

-Why OpenACC ? à i) high-level, ii) requires few changes to the code, iii) directive-based;

-Two main directives or pragmas: i) compute pragmas & ii) data pragmas.

-The #pragma acc parallel loop directive indicates that a
loop can be parallelized and executed in parallel on the
GPU:

-The #pragma enter data copying directive
explicitly transfers data from the CPU
memory to the GPU memory.

#pragma acc parallel loop vector
for (i = 0; i < N; i++){

// Loop body
// ... Things to do here ...

}

#pragma acc enter data copyin (A,B)
// ... Code where A ad B are used in GPU computations
#pragma acc exit data delete (A,B)

Missione 4 • Istruzione e RicercaICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

OpenACC: Keypoints

Data Locality: reduce data movement between CPU and GPU
memory as much as possible.

Data transfer major bottleneck à solution straightforward: all
computational part of the program should reside in GPU
memory !

Private Variables: GPU threads should perform identical
operations but on different memory addresses.

Without precautions, simultaneous operations are performed
at the same memory address leading to incorrect results.
à Private variables have local scope and are allocated
individually for each thread.

int V[8];
int A[NX][NY][NZ];

#pragma acc parallel loop collapse(3) private(V[:8])
for (i = 0; i < NX; i++){
for (j = 0; j < NY; j++){
for (k = 0; k < NZ; k++){

A[i][j][k] *= 2.0;

V[0] = ...;
V[1] = ...;
...

}}}

Missione 4 • Istruzione e RicercaICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

OpenACC: Keypoints

Coalesced Memory Access: consecutive threads access
consecutive memory addresses. Memory coalescing is a
technique which allows optimal usage of the global memory
bandwidth.

à the GPU can perform memory transactions more efficiently,
reducing the overall memory access time and improving
performance.

à Requires different array ordering so that the inner loop we’re
accelerating should be also the fastest index of the
multidimensional array as in this example.

#pragma acc parallel loop vector
for (i = ibeg; i <= iend; i++){

#pragma acc loop seq
for (nv = 0; nv < NVAR; nv++) {

// MUST REVERSE INDICES HERE:

v[i][nv] *= 2; à v[nv][i] =*= 2;
}

}

Using C++ templates: v[nv][i] à v(i,nv)

Missione 4 • Istruzione e RicercaICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

OpenACC: Particles

-Particle are constantly injected and deleted.

-Previous versions (PLUTO 4.4) based on linked list.

-Problem: linked list not easy parallelizable on GPU !
à Need to go back to arrays à Classes (C++)

-Parallelizeble structure, e.g.:

-Reshaping memory is expensive: memory allocation in
chunks:

Class particleContainer:

Class position à pos(i=0,nParticles)

Class velocity à vel(i=0,nParticles)

Class energy spectra à eng(i=0,nParticlesxnbins)

std::vector<double*> pos;
for(int i = 0; i < nChunks; i++){

pos.push_back(new double[chunkSize]);
}

#pragma acc parallel loop present(pc)
for (i = 0; i < pc.Size(); i++){

partContainer.pos(i) = 4.56;
}

Missione 4 • Istruzione e RicercaICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Results: MHD 3D
-Weak scaling on the 3D version of the Orszag-Tang vortex;

-where

-Scaling conducted on Leonardo equipped nodes with Intel Ice Lake CPU
and 4 NVIDIA A100 ("Da Vinci" variant) up to 256 nodes (= 1024 GPU).

-Weak scaling (6403 grid cells per node) using 3 different configurations
1. CPU + MPI / 2. GPU + MPI / 3. GPU + NCCL

Missione 4 • Istruzione e RicercaICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Results: 1) CPU-GPU Speedup

Execution time of the weak scaling tests for 400
steps. A speed-up factor in the ≈ 28.4 − 33.6 range is
measured.

In the figure, the values represent the
number of steps and grid points handled by
each node.

Missione 4 • Istruzione e RicercaICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Results: 2) Weak Scaling (Synchronous version)

Version #1: synchrounous Send/Recv calls:

à Not optimal for GPU computations ß

// Fill buffer
send_bufL[] ß data()
send_bufR[] ß data()

// Send / Receive data
MPI_Sendrecv (send_bufL, count, MPI_DOUBLE, procL,

recv_bufR, count, MPI_DOUBLE, procR, ...)

Missione 4 • Istruzione e RicercaICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Results: 2) Weak Scaling (Asynchronous version)

Version #2: asynchrounous Send/Recv calls:

// Initiate ascynchrounous receive
MPI_Irecv (recv_buf, ... , recv_proc, ... , MPI_recv_req)

// Fill buffer
snd_bufL[] ß data()

// Send data
MPI_Isend (send_buf, ... , send_proc, ... , MPI_send_req)

// Wait for MPI receive request to complete
MPI_Waitall (... , MPI_recv_req, ...)

// Unpack buffers
data() ß recv_buf[]

// Wait for MPI send request to complete
MPI_Waitall (... , MPI_send_req, ...)

Missione 4 • Istruzione e RicercaICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Next Steps and Expected Results

-Extension of asynchrounous inter-GPU communication to NCCL;

-Improving particle scaling on large number of CPUs and GPUs;

-Addition of non-Cartesian geometries;

-Addition of non-ideal terms (viscosity, thermal conduction, resistivity);

-Addition of cosmic-rays particles and dust particles;

-Adaptive Mesh Refinement.

Missione 4 • Istruzione e RicercaICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

THANK YOU

