

Finanziato dall'Unione europea NextGenerationEU

Deep learning of 87A-like supernovae progenitor characteristics: training the Inception model on synthetic data M. Grassia, G. Mangioni, S. Cosentino*, M. L. Pumo

Spoke 3 General Meeting, Elba 5-9 / 05, 2024

ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

* External collaborator

Missione 4 • Istruzione e Ricerca

Scientific Rationale

- In the next few years, the number of available supernovae observations will increase exponentially thanks to the LSST Survey
- Inferring the supernovae's progenitor characteristics is currently performed using several computationally expensive methods
 - An example is **Bayesian inference**, that is computationally challenging as a Monte Carlo search is involved to test the parameters
- Given the increasing number of observations, finding the characteristics of all the supernovae' progenitors will be practically unfeasible with current methods
 - Supernovae classification (e.g., 87A, type 1, etc.), on the other hand, is an easier task

Technical Objectives

- In this work, we aim at training a machine to infer the characteristics of the supernovae's progenitor: energy, mass, radius, and nickel content
 - World-first approach, never done before
- Machine Learning is well-suited for the task:
 - Noise and error-tolerance
 - Fast computation
 - Easily trainable on new data
 - Can provide insights on the problem itself trough interpretability tools
- This work is also meant as a test-bench for the new HPC capabilities that are under deployment

Methodologies and Solutions

- We employ the state-of-the-art of trainable algorithms, the *InceptionTime* model, for time-series data to infer (through regression) the characteristics
- Each observation includes two timeseries the bolometric luminosity and photospheric velocity
- Unfortunately, real-world observations are scarce
- We train the model on generated time-series data from synthetic models, that provide bolometric luminosity and photo-spheric velocity

Methodologies and Solutions

- Synthetic models available:
 - Semi-analitical: very fast, produces rough approximations that do not exactly match the real-world observations
 - Hydrodynamical simulations: computationally expensive and slow, accounts for many phenomena happening in the star
- Dataset generated:
 - 205k semi-analitical observations of 87A-like
 - 59 hydrodynamical observations of 87A-like

Accomplished Work, Results

- First iteration:
 - Training and testing on the semi-analitical data
 - Excellent results: Mean Absolute Percentage Error (MAPE) lower than 1% on all the four characteristics (radius, mass, energy, nickel content)

Accomplished Work, Results

- Second iteration:
 - Training on the semi-analitical data
 - Validation and testing on the hydrodynamical observations
 - Very poor results (MAPE)

Radius	Mass	Energy	Nickel
98%	48%	193%	186%

 Removing the velocity curve and trimming the first ~30 days (that are way off in the semi-analytical model) and extending the tail (that only depends on the nickel content and that can be easily inferred) didn't help

Accomplished Work, Results

Third iteration: Curriculum Learning

- Training on the semi-analitical data
- Validation on the hydrodynamical observations
- The best model is re-trained on the hydrodynamical validation set
- **Testing** is then performed on a different split of **hydrodynamical**

Major improvement in results (MAPE)

	Radius	Mass	Energy	Nickel
baseline	98%	48%	193%	186%
C. learning	61 %	20%	41 %	39%

• Grid search was also implemented, but needs computational power to be run

Next Steps and Expected Results

- Generalize from synthetic data to real-world observations
- Dataset improvement
 - New and more accurate synthetic model to improve the training data
 - More hydrodynamical simulations
- **Grid search** over the hyper-parameters of the model
- Model interpretability/explanation tools to understand what are the most important phases (in days) for the task
 - This is meant to help researchers spare observational resources that can be employed elsewhere

Timescale, Milestones and KPIs

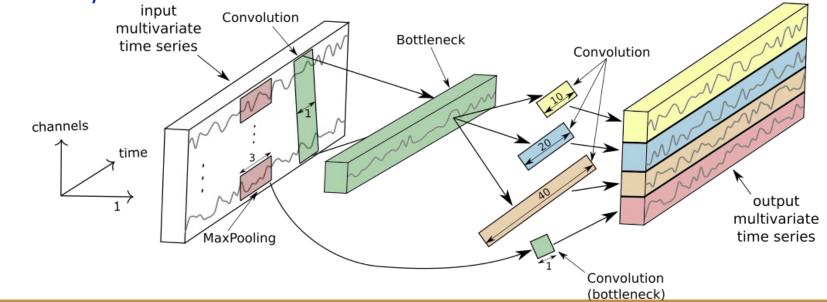
• M7:

- Model refinement
- Code development and improvements
- KPI: code / data
- M8
 - **Grid search** of hyper-parameters
 - KPI: numerical results, code / data
- M9
 - Design and development of timeseries key points extraction
 - Generalization to real-world examples
 - KPI: numerical results, code / data
- M10
 - KPI: paper preparation + results

Thank you!

InceptionTime model

- Proposed for Time Series Classification (TSC) tasks
- Stacks multiple Inception-v4 layers initialized with various weights
 - Convolutional Neural Networks (CNNs) are at the core
 - Combines pooling, batch normalization and
 - optionally includes residual connections



ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Missione 4 • Istruzione e Ricerca