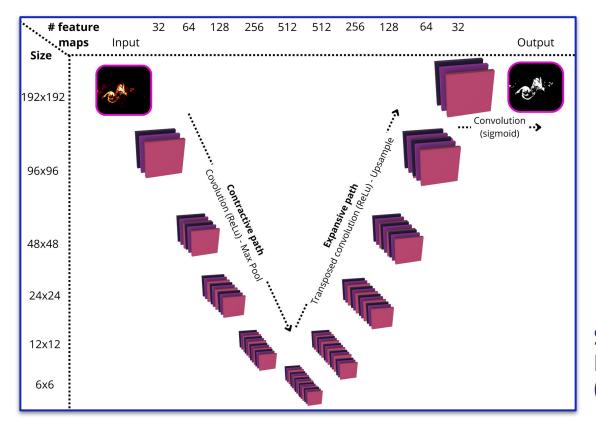
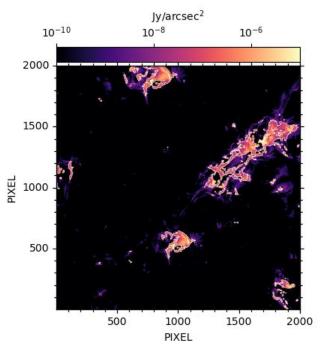


Development of a Convolutional Neural Network (CNN) to perform the automated segmentation of diffuse radio emission in radio astronomical surveys: <u>Radio U-Net</u>, based on the U-Net architecture.



Python code with Keras Tensorflow Scalable from CPU to GPU Run on CINECA HPC systems (Leonardo)

Problem: small number of reference images for the training Solution: train the network on synthetic observations built on cosmological simulations (Gheller&Vazza 2022)



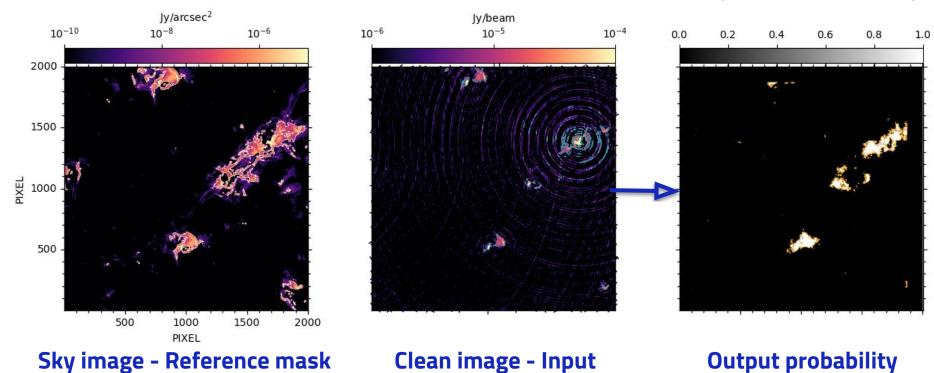
10-6 10-5 10-4

Jy/beam

Sky image - Reference mask

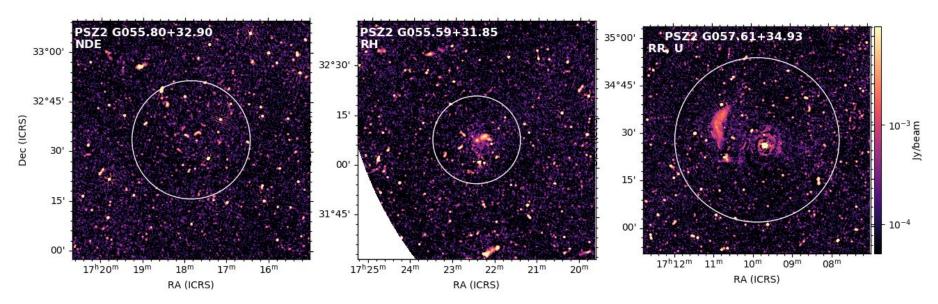
Clean image - Input

Problem: small number of reference images for the training Solution: train the network on synthetic observations built on cosmological simulations (Gheller&Vazza 2022)



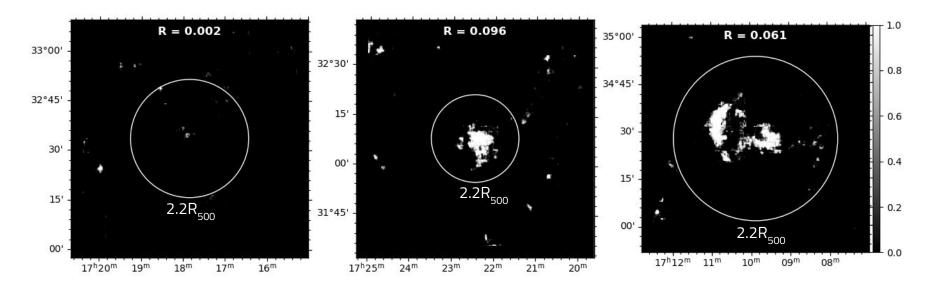
ICSC Italian Research Center on High-Performance Computing, Big Data and Quantum Computing

Application: apply Radio U-Net on LOFAR Two Metre Sky Survey Data -> PSZ2-LoTSS2 sample of 309 galaxy clusters (Botteon+ 2023)



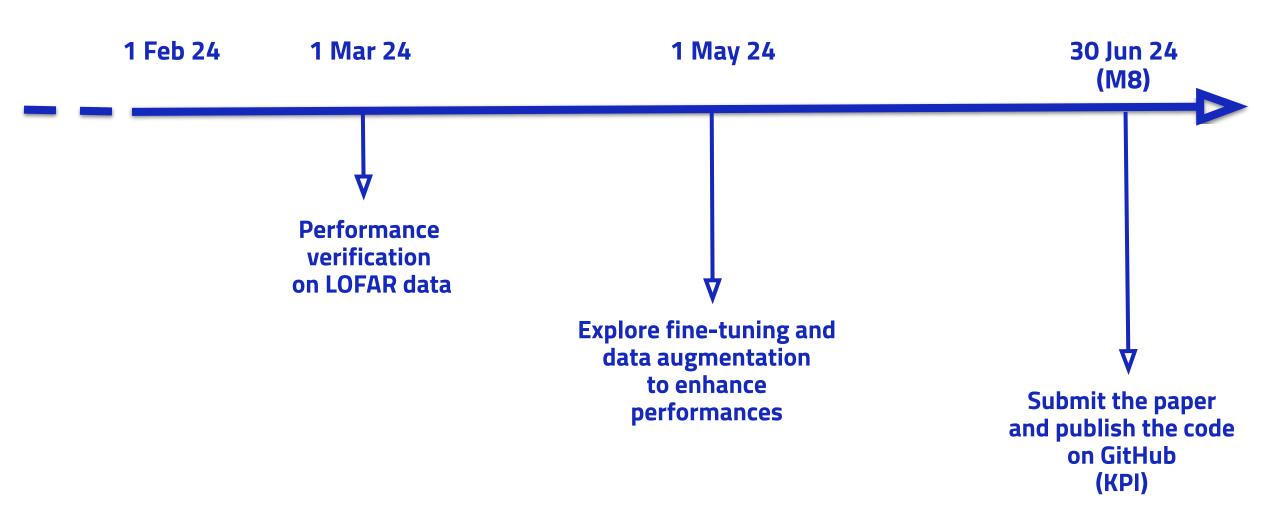
Images directly downloaded from the survey archive, without any tailored processing

Application: apply Radio U-Net on LOFAR Two Metre Sky Survey Data -> PSZ2-LoTSS2 sample of 309 galaxy clusters (Botteon+ 2023)

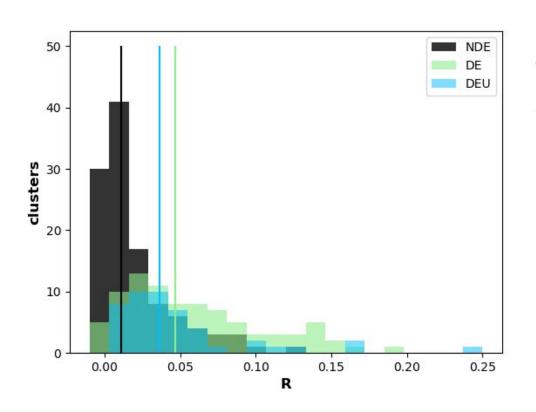


Detection ratio
R = (sum probability/number of pixels)_{2,2R500}

Timescale, Milestones and KPIs



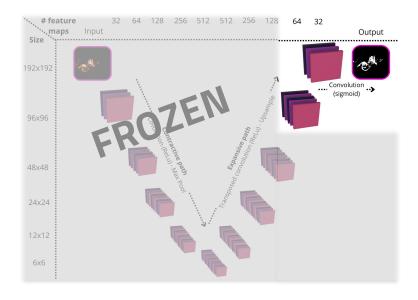
Performance verification on LOFAR data



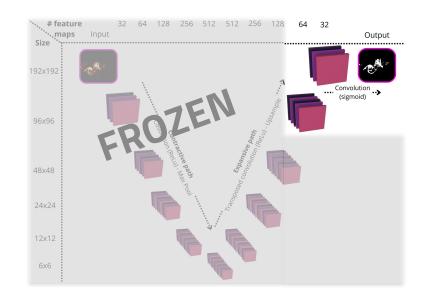
	non-detected detected		uncertain	
	NDE	DE	DEU	tot
Initial test set	114	85	47	246
$True_{R=0.015}$	71 (62%)	70 (82%)	39 (83%)	180 (73%)

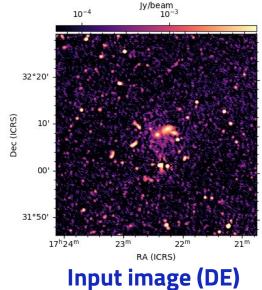
Result: detection accuracy 73% (how many are correctly classified?) precision 72% (how many detections are true?) false negative 17% (how many sources are missed?)

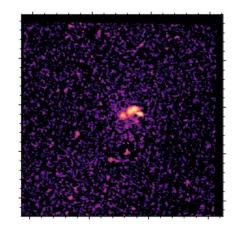
Explore fine-tuning using LOFAR data

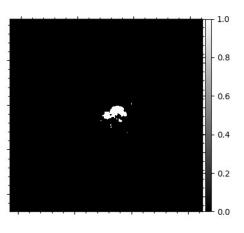


Explore fine-tuning using LOFAR data



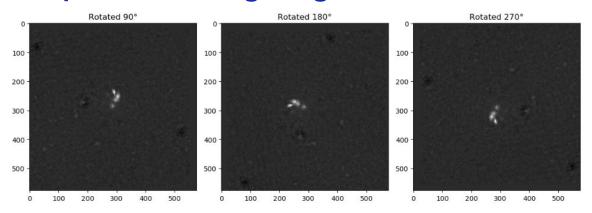




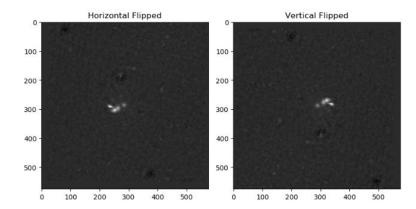


Reference mask

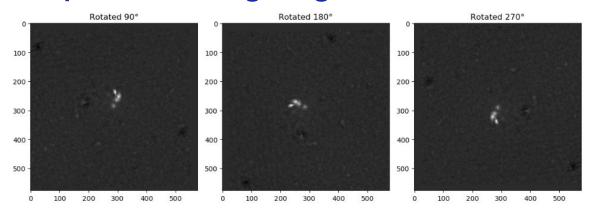
Explore fine-tuning using LOFAR data and data augmentation.



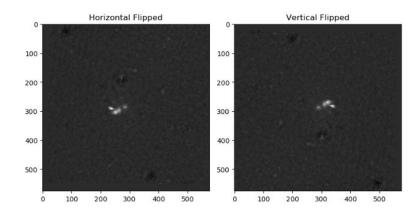
Test of several hyperparameters



Explore fine-tuning using LOFAR data and data augmentation.



Test of several hyperparameters



	NDE	DEU	tot
Test set	54	47	108
$True_{original R=0.026}$	40 (74%)	34 (72%)	71%
True _{ftR=0.00084}	31 (57%)	42 (89%)	71%
$True_{ft-da^{R=0.00081}}$	33 (61%)	41 (87%)	72%

Result: fine-tuning reduces false negative rate but does not increase the overall accuracy

Next Steps and Expected Results

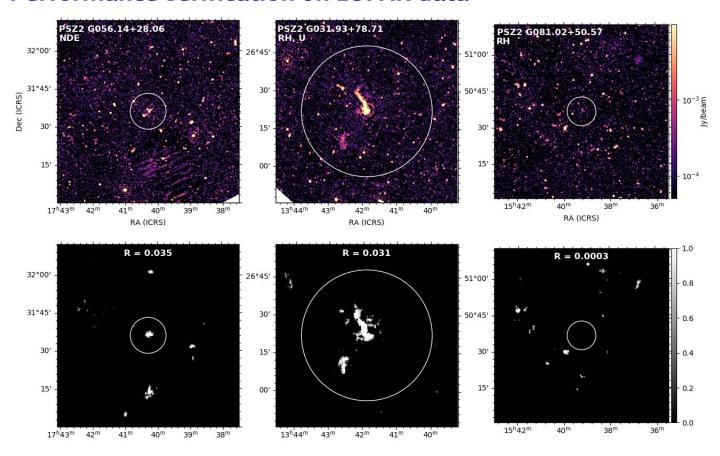
30 Jun 24 M9 M10 (M8)

Finalize and submit the paper Make the code publicly available

Further developments

- Include radio galaxies in synthetic observations for the training
- Apply to other radio surveys
- Add a classification layer to the network

Performance verification on LOFAR data

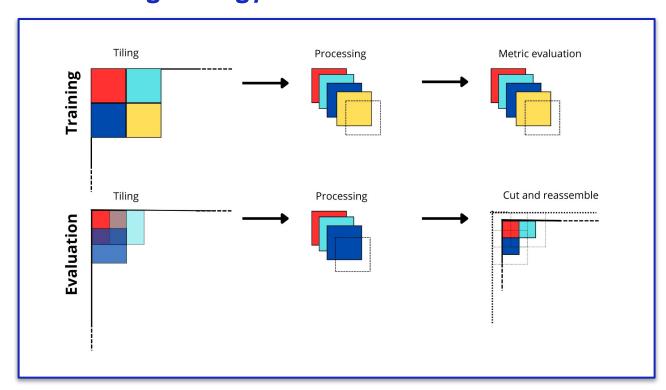


False positive mainly caused by extended and/or grouped radio galaxies which are not present in simulations

Problem: small number of labelled images for the training

Solution: train the network on synthetic observations built on cosmological simulations

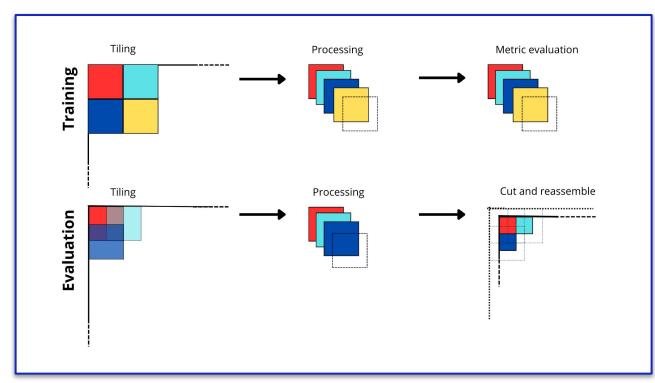
+ tiling strategy: increase the number of individual images and exploit parallel processing



1000 images 2000x2000 100·000 tiles 192x192

Problem: small number of labelled images for the training Solution: train the network on synthetic observations built on cosmological simulations

+ tiling strategy: increase the number of individual images and exploit parallel processing

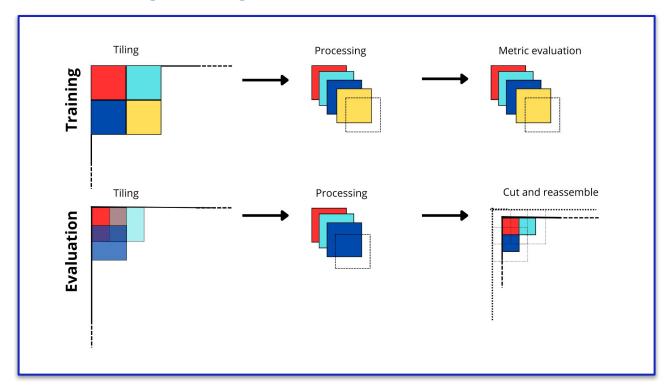


1000 images 2000x2000 100·000 tiles 192x192

Problem: small number of labelled images for the training

Solution: train the network on synthetic observations built on cosmological simulations

+ tiling strategy: increase the number of individual images and exploit parallel processing



1000 images 2000x2000 100:000 tiles 192x192

Solving boundary effects by cropping overlapped tiles when re-assembling the output mask